Variational Methods of Data Assimilation and Inverse Problems for Studying the Atmosphere, Ocean, and Environment

被引:24
作者
Penenko, V. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Pr Akad Lavrenteva 6, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
variational principles; data assimilation; adjoint problems; sensitivity analysis; uncertainty assessment; inverse problems; models of atmospheric dynamics and chemistry;
D O I
10.1134/S1995423909040065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Methods for the combined use ofmathematical models and observational data for studying and forecasting the evolution of natural processes in the atmosphere, ocean, and environment are presented. Variational principles for estimation of functionals defined on a set of functions of state, parameters and sources of models of processes are a theoretical background. Mathematical models with allowance for uncertainties are considered as constraints to the class of functions. Attention is focused on methods of successive data assimilation and on inverse problems.
引用
收藏
页码:341 / 351
页数:11
相关论文
共 50 条
[21]   Variational regularization of inverse problems for manifold-valued data [J].
Storath, Martin ;
Weinmann, Andreas .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (01) :195-230
[22]   Convergent least-squares optimization methods for variational data assimilation [J].
Cartis, Coralia ;
Kaouri, Maha H. ;
Lawless, Amos S. ;
Nichols, Nancy K. .
OPTIMIZATION, 2024, 73 (11) :3451-3485
[23]   Response of a coupled ocean-ice-atmosphere model to data assimilation in the tropical zone of the Pacific Ocean [J].
K. P. Belyaev ;
N. P. Tuchkova ;
U. Cubash .
Oceanology, 2010, 50 :306-316
[24]   Response of a coupled ocean-ice-atmosphere model to data assimilation in the tropical zone of the Pacific Ocean [J].
Belyaev, K. P. ;
Tuchkova, N. P. ;
Cubash, U. .
OCEANOLOGY, 2010, 50 (03) :306-316
[25]   Numerical solution to the problem of variational assimilation of operational observational data on the ocean surface temperature [J].
V. I. Agoshkov ;
S. A. Lebedev ;
E. I. Parmuzin .
Izvestiya, Atmospheric and Oceanic Physics, 2009, 45 :69-101
[26]   A three-dimensional variational ocean data assimilation system: Scheme and preliminary results [J].
Jiang Zhu ;
Guangqing Zhou ;
Changxiang Yan ;
Weiwei Fu ;
Xiaobao You .
Science in China Series D: Earth Sciences, 2006, 49 :1212-1222
[27]   A 4D-variational ocean data assimilation application for Santos Basin, Brazil [J].
Mauricio da Rocha Fragoso ;
Gabriel Vieira de Carvalho ;
Felipe Lobo Mendes Soares ;
Daiane Gracieli Faller ;
Luiz Paulo de Freitas Assad ;
Raquel Toste ;
Lívia Maria Barbosa Sancho ;
Elisa Nóbrega Passos ;
Carina Stefoni Böck ;
Bruna Reis ;
Luiz Landau ;
Hernan G. Arango ;
Andrew M. Moore .
Ocean Dynamics, 2016, 66 :419-434
[28]   A three-dimensional variational ocean data assimilation system:Scheme and preliminary results [J].
ZHU Jiang ZHOU Guangqing YAN Changxiang FU Weiwei YOU Xiaobao International Center for Climate and Environment Sciences Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China Jiangsu Key Laboratory of Meteorological Disaster Nanjing University of Information Science and Technology Nanjing China Beijing Institute of Applied Meteorology Beijing China .
Science in China(Series D:Earth Sciences), 2006, (11) :1212-1222
[29]   A 4D-variational ocean data assimilation application for Santos Basin, Brazil [J].
Fragoso, Mauricio da Rocha ;
de Carvalho, Gabriel Vieira ;
Mendes Soares, Felipe Lobo ;
Faller, Daiane Gracieli ;
de Freitas Assad, Luiz Paulo ;
Toste, Raquel ;
Barbosa Sancho, Livia Maria ;
Passos, Elisa Nobrega ;
Boeck, Carina Stefoni ;
Reis, Bruna ;
Landau, Luiz ;
Arango, Hernan G. ;
Moore, Andrew M. .
OCEAN DYNAMICS, 2016, 66 (03) :419-434
[30]   A Projection Method for the Estimation of Error Covariance Matrices for Variational Data Assimilation in Ocean Modelling [J].
Gonzalez-Ondina, Jose M. ;
Sampson, Lewis ;
Shapiro, Georgy I. .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (12)