ON A DISSOLUTION-GROWTH PROBLEM WITH SURFACE-TENSION IN THE NEIGHBORHOOD OF A STATIONARY SOLUTION

被引:6
作者
ABERGEL, F
HILHORST, D
ISSARDROCH, F
机构
关键词
STEFAN PROBLEM; SURFACE TENSION; FREE BOUNDARY; NONLINEAR PARABOLIC PDES;
D O I
10.1137/0524020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider a one-phase Stefan problem with surface tension in dimension two and show a well-posedness result in the neighborhood of a stationary solution, in the case that the moving interface is parametrized in the form y = f(x, t).
引用
收藏
页码:299 / 316
页数:18
相关论文
共 10 条
[1]  
BREZIS H, 1987, THEORIE APPLICATIONS
[2]  
Chen X.-Y., 1991, HIROSHIMA MATH J, V21, P47
[3]  
CHEN XF, 1990, IMA PREPRINT SERIES, V708
[4]   WELL-POSEDNESS OF A MOVING BOUNDARY-PROBLEM ARISING IN A DISSOLUTION-GROWTH PROCESS [J].
CONRAD, F ;
HILHORST, D ;
SEIDMAN, TI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (05) :445-465
[5]  
COURNIL M, COMMUNICATION
[6]  
DUCHON J, 1984, ANN I H POINCARE-AN, V1, P361
[7]  
HILHORST D, 1990, IN PRESS P FREE BOUN
[8]  
KALEYDJIAN F, 1986, REACT SOLID, V2, P1
[9]  
Ladyzhenskaya O. A., 1968, TRANSL MATH MONOGRAP, V23
[10]  
Temam R, 1987, NAVIER STOKES EQUATI