ON A FINITE-DIMENSIONAL CHARACTERIZATION FOR SOME CLASSES OF OPERATORS

被引:0
作者
AIENA, P [1 ]
机构
[1] UNIV PALERMO,IST MATEMAT,I-90134 PALERMO,ITALY
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 1984年 / 3A卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:393 / 399
页数:7
相关论文
共 50 条
[21]   FINITE-DIMENSIONAL EXTENSIONS OF CERTAIN SYMMETRIC OPERATORS [J].
MICHAEL, IM .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (03) :455-456
[22]   On the structure of a semigroup of operators with finite-dimensional ranges [J].
A. V. Pechkurov .
Mathematical Notes, 2012, 91 :231-242
[23]   On the Structure of a Semigroup of Operators with Finite-Dimensional Ranges [J].
Pechkurov, A. V. .
MATHEMATICAL NOTES, 2012, 91 (1-2) :231-242
[24]   Finite-dimensional representations of invariant differential operators [J].
Schwarz, GW .
JOURNAL OF ALGEBRA, 2002, 258 (01) :160-204
[25]   DIFFERENTIAL-OPERATORS AND FINITE-DIMENSIONAL ALGEBRAS [J].
CANNINGS, RC ;
HOLLAND, MP .
JOURNAL OF ALGEBRA, 1995, 174 (01) :94-117
[26]   SYMBOL OF OPERATORS FORMING FINITE-DIMENSIONAL ALGEBRAS [J].
VASILEVSKII, NL ;
GUTNIKOV, EV .
DOKLADY AKADEMII NAUK SSSR, 1975, 221 (01) :18-21
[27]   On cubic operators defined on finite-dimensional simplexes [J].
Rozikov U.A. ;
Khamraev A.Yu. .
Ukrainian Mathematical Journal, 2004, 56 (10) :1699-1711
[28]   Noncubic Dirac Operators for Finite-Dimensional Modules [J].
Afentoulidis-Almpanis, Spyridon .
JOURNAL OF LIE THEORY, 2021, 31 (04) :1113-1140
[29]   Doubly stochastic operators on a finite-dimensional simplex [J].
F. A. Shahidi .
Siberian Mathematical Journal, 2009, 50 :368-372
[30]   Learning Finite-Dimensional Representations For Koopman Operators [J].
Khosravi, Mohammad .
LEARNING FOR DYNAMICS AND CONTROL, VOL 144, 2021, 144