Repair of bone defects with gelatin-based composites: A review

被引:34
作者
Chen, Kuo-Yu [1 ]
Yao, Chun-Hsu [2 ,3 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Dept Chem & Mat Engn, Touliu 64002, Yunlin, Taiwan
[2] China Med Univ, Sch Chinese Med, Taichung 40402, Taiwan
[3] China Med Univ, Dept Biomed Imaging & Radiol Sci, Taichung 40402, Taiwan
来源
BIOMEDICINE-TAIWAN | 2011年 / 1卷 / 01期
关键词
bone tissue engineering; composites; gelatin;
D O I
10.1016/j.biomed.2011.10.005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Numerous biomaterials are used in bone replacement therapy to repair defects caused by trauma, inflammation, tumor resection, or skeletal abnormalities. Ideally, the replacement material must be biocompatible and must be able to be reabsorbed or to dissolve naturally as the bone grows, yielding a newly remodeled bone. Gelatin, a partially denatured derivative of collagen, is biodegradable, exhibits good biocompatibility, and is less antigenic than collagen. Gelatin-based composites, therefore, provide an excellent scaffold for bone replacement. This paper provides a review of the work of the past decade in our laboratory on the development of gelatin-based composites that are suitable for repairing bone defects. Copyright (C)2011, China Medical University. Published by Elsevier Taiwan LLC. All rights reserved.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 33 条
[1]   Application of crosslinkers to dentin collagen enhances the ultimate tensile strength [J].
Bedran-Russo, Ana Karina B. ;
Pereira, Patricia N. R. ;
Duarte, Wagner R. ;
Drummond, James L. ;
Yamauchi, Mitsuo .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2007, 80B (01) :268-272
[2]   Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-getatine-hydroxyapatite scaffolds with anisotropic pore structure [J].
Bernhardt, A. ;
Despang, F. ;
Lode, A. ;
Demmler, A. ;
Hanke, T. ;
Gelinsky, M. .
Journal of Tissue Engineering and Regenerative Medicine, 2009, 3 (01) :54-62
[3]   Effect of added gelatin on the properties of calcium phosphate cement [J].
Bigi, A ;
Bracci, B ;
Panzavolta, S .
BIOMATERIALS, 2004, 25 (14) :2893-2899
[4]  
Bravo L, 1998, NUTR REV, V56, P317, DOI 10.1111/j.1753-4887.1998.tb01670.x
[5]  
Bruder SP, 1998, CLIN ORTHOP RELAT R, pS247
[6]   Novel Bone Substitute Composed of Oligomeric Proanthocyanidins-Crosslinked Gelatin and Tricalcium Phosphate [J].
Chen, Kuo-Yu ;
Shyu, Pei-Chi ;
Chen, Yueh-Sheng ;
Yao, Chun-Hsu .
MACROMOLECULAR BIOSCIENCE, 2008, 8 (10) :942-950
[7]   Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite [J].
Chen, Kuo-Yu ;
Shyu, Pei-Chi ;
Dong, Guo-Chung ;
Chen, Yueh-Sheng ;
Kuo, Wei-Wen ;
Yao, Chun-Hsu .
BIOMATERIALS, 2009, 30 (09) :1682-1688
[8]   A novel bone substitute composite composed of tricalcium phosphate, gelatin and drynaria fortunei herbal extract [J].
Dong, Guo-Chung ;
Chen, Hueih Min ;
Yao, Chun-Hsu .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 84A (01) :167-177
[9]  
GILDING DK, 1981, BIOCOMPATIBILITY CLI, V2, P209
[10]   Proanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices [J].
Han, B ;
Jaurequi, J ;
Tang, BW ;
Nimni, ME .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 65A (01) :118-124