SINGULAR CURVES WITH LINE BUNDLES L DEFINED OVER F-q AND WITH H-0(L) = H-1(L) = 0

被引:0
作者
Ballico, Edoardo [1 ]
机构
[1] Univ Trento, Dept Math, Via Sommarive 14, Trento, TN, Italy
关键词
Singular curve over a finite field; seminormal singularity; line bundle defined over a finite field;
D O I
10.1142/S179355711350023X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we prove the existence of several pairs (X, L), where X is a geometrically integral projective curve defined over F-q and L is a line bundle on X defined over Fq and with H-0(X, L) = H-1(X, L) = 0. These examples are obtained using the existence of similar line bundles on the normalization of X, i.e. a case studied by C. Ballet, C. Ritzenthaler and R. Roland.
引用
收藏
页数:11
相关论文
共 7 条
[1]   On the existence of dimension zero divisors in algebraic function fields defined over Fq [J].
Ballet, S. ;
Ritzenthaler, C. ;
Rolland, R. .
ACTA ARITHMETICA, 2010, 143 (04) :377-392
[2]   Curves with many points and multiplication complexity in any extension of Fq [J].
Ballet, S .
FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (04) :364-377
[3]   On the tensor rank of the multiplication in the finite fields [J].
Ballet, Stephane .
JOURNAL OF NUMBER THEORY, 2008, 128 (06) :1795-1806
[4]  
Hartshorne R, 1977, ALGEBRAIC GEOMETRY
[5]   A CONSTRUCTION OF GENERALIZED JACOBIAN VARIETIES BY GROUP EXTENSIONS [J].
OORT, F .
MATHEMATISCHE ANNALEN, 1962, 147 (04) :277-286
[6]  
SERRE J-P., 1988, GRAD TEXTS MATH, V117, DOI DOI 10.1007/978-1-4612-1035-1
[7]  
SHPARLINSKI IE, 1992, LECT NOTES MATH, V1518, P145