A CLASS OF FRACTIONAL CONTINUOUS-TIME PROCESSES

被引:0
|
作者
DENIAU, C
VIANO, MC
OPPENHEIM, G
机构
[1] UNIV PARIS 11,EQUIPE STAT,F-91405 ORSAY,FRANCE
[2] UNIV LILLE 1,F-59655 VILLENEUVE DASCQ,FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As it is already done for discrete time processes, we define a family of continuous time stationary processes which generalizes the autoregressive ones and includes long memory processes. This family is richer than the well known fractional brownian family: two distinct parameters act on the memory and on the sample paths local properties.
引用
收藏
页码:451 / 454
页数:4
相关论文
共 50 条
  • [21] An Introduction to Continuous-Time Stochastic Processes
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 597 - 598
  • [22] The predictability of continuous-time, bandlimited processes
    Lyman, RJ
    Edmonson, WW
    McCullough, S
    Rao, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (02) : 311 - 316
  • [23] Continuous-Time Functional Diffusion Processes
    Franzese, Giulio
    Corallo, Giulio
    Rossi, Simone
    Heinonen, Markus
    Filippone, Maurizio
    Michiardi, Pietro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] Continuous-time monitoring of queueing processes
    Kuang, Yanqing
    Xu, Ruiyu
    Wu, Jianguo
    Das, Devashish
    Sir, Mustafa
    Pasupathy, Kalyan
    FLEXIBLE SERVICES AND MANUFACTURING JOURNAL, 2025,
  • [25] CONTINUOUS-TIME CONTROLLED BRANCHING PROCESSES
    del Puerto, Ines M.
    Yanev, George P.
    Molina, Manuel
    Yanev, Nikolay M.
    Gonzalez, Miguel
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (03): : 332 - 342
  • [26] ON CONTINUOUS-TIME THRESHOLD ARMA PROCESSES
    BROCKWELL, PJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 39 (02) : 291 - 303
  • [27] ON COUPLING OF CONTINUOUS-TIME RENEWAL PROCESSES
    LINDVALL, T
    JOURNAL OF APPLIED PROBABILITY, 1982, 19 (01) : 82 - 89
  • [28] Bootstrapping continuous-time autoregressive processes
    Brockwell, Peter J.
    Kreiss, Jens-Peter
    Niebuhr, Tobias
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) : 75 - 92
  • [29] Continuous-time relaxation labeling processes
    Torsello, A
    Pelillo, M
    PATTERN RECOGNITION, 2000, 33 (11) : 1897 - 1908
  • [30] Bootstrapping continuous-time autoregressive processes
    Peter J. Brockwell
    Jens-Peter Kreiss
    Tobias Niebuhr
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 75 - 92