THEOREM FOR FUNCTIONAL-DERIVATIVES IN DENSITY-FUNCTIONAL THEORY

被引:2
作者
HUI, OY
LEVY, M
机构
[1] TULANE UNIV, DEPT CHEM, NEW ORLEANS, LA 70118 USA
[2] TULANE UNIV, QUANTUM THEORY GRP, NEW ORLEANS, LA 70118 USA
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 01期
关键词
D O I
10.1103/PhysRevA.44.54
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Consider a functional Q[n] that scales homogeneously, Q[n-lambda] = lambda(k)Q[n], where n-lambda-(r) = lambda-3n(lambda-r). It is already known that Q[n] is related to its functional derivative, q([n];r) = delta-Q[n]/delta-n, by kQ[n] = - integral d3r n(r)r.NABLA q([n];r). We here prove that q([n];r) is related to its functional derivative by kq([n];r) = - integral d3r'n(r')r'.NABLA'{delta-q([n];r)/delta-n(r')}-r.NABLA q([n];r) and that there also exists a homogeneouslike scaling relation for q([n];r): q([n-lambda];r) = lambda-(k)q([n];lambda-r). In addition, delta-q([n];r)/delta-n(r') = delta-q([n];r')/delta-n(r) because q([n];r) is the functional derivative of Q[n]. Based upon these exact properties of q([n];r) it is proved that if a trial potential qBAR([n];r) satisfies kQ[n] = - integral d3r n(r)r.NABLA qBAR([n];r) and delta-qBAR([n];r)/delta-n(r') = delta-qBAR([n];r')/delta-n(r), then kq([n];r) = - integral d3r'n(r')r'.NABLA'{delta-qBAR([n];r)/delta-n(r')}-r.NABLA qBAR([n];r. If qBAR([n];r) further satisfies qBAR([n-lambda];r) = lambda-(k)q([n];lambda-r), we prove that q([n];r) = qBAR([n];r), which means that qBAR is exact. Application of the theorem to density-functional theory is discussed.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 50 条
  • [31] Density-functional theory on graphs
    Penz, Markus
    van Leeuwen, Robert
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (24) : 244111
  • [32] DENSITY-FUNCTIONAL THEORY OF SUPERCONDUCTIVITY
    FRITSCHE, L
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1994, 69 (05): : 859 - 870
  • [33] COROLLARY TO DENSITY-FUNCTIONAL THEORY
    DAVIDSON, ER
    PHYSICAL REVIEW A, 1990, 42 (05): : 2539 - 2541
  • [34] DENSITY-FUNCTIONAL THEORY AS THERMODYNAMICS
    NAGY, A
    PARR, RG
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1994, 106 (02): : 217 - 227
  • [35] DENSITY-FUNCTIONAL THEORY FOR SUPERCONDUCTORS
    OLIVEIRA, LN
    GROSS, EKU
    KOHN, W
    PHYSICAL REVIEW LETTERS, 1988, 60 (23) : 2430 - 2433
  • [36] ASPECTS OF DENSITY-FUNCTIONAL THEORY
    PARR, RG
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1994, 69 (05): : 737 - 743
  • [37] Implicit density-functional theory
    Liu, Bin
    Percus, Jerome K.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [38] Density-functional theory and chemistry
    Parr, RG
    CONDENSED MATTER THEORIES, VOL 15, 2000, 15 : 297 - 302
  • [39] Spin virial theorem in the time-dependent density-functional theory
    Nagy, A
    PHYSICAL REVIEW A, 2003, 68 (04) : 5
  • [40] Analytic structure of functional derivatives of density-functional approximations
    Gaiduk, Alex P.
    Staroverov, Viktor N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240