BRST QUANTIZATION OF GAUGE-THEORIES IN HAMILTONIAN-LIKE GAUGES

被引:1
作者
FROLOV, SA
机构
关键词
D O I
10.1007/BF01016119
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The general scheme of BRST quantization of systems with first-class constraints in gauges of the form lambda-a = f(a)(p, q) is considered. As examples, BRST quantization is performed for a relativistic particle and Yang-Mills fields in linear gauges n-mu-A-mu = 0.
引用
收藏
页码:464 / 477
页数:14
相关论文
共 35 条
[1]   YANG-MILLS THEORIES IN THE LIGHT-CONE GAUGE [J].
BASSETTO, A ;
DALBOSCO, M ;
LAZZIZZERA, I ;
SOLDATI, R .
PHYSICAL REVIEW D, 1985, 31 (08) :2012-2019
[2]   OPERATOR QUANTIZATION AND ABELIZATION OF DYNAMIC-SYSTEMS SUBJECT TO 1ST-CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
RIVISTA DEL NUOVO CIMENTO, 1986, 9 (10) :1-48
[3]   A GENERALIZED CANONICAL FORMALISM AND QUANTIZATION OF REDUCIBLE GAUGE-THEORIES [J].
BATALIN, IA ;
FRADKIN, ES .
PHYSICS LETTERS B, 1983, 122 (02) :157-164
[4]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[5]   CANONICAL FORMALISM AND THE LEIBBRANDT-MANDELSTAM PRESCRIPTION FOR NONCOVARIANT GAUGES [J].
BURNEL, A .
PHYSICAL REVIEW D, 1989, 40 (04) :1221-1228
[6]   THE PROPAGATOR IN THE A0=0 GAUGE [J].
CARACCIOLO, S ;
CURCI, G ;
MENOTTI, P .
PHYSICS LETTERS B, 1982, 113 (04) :311-314
[7]   ALTERNATIVE APPROACH TO PROOF OF UNITARITY FOR GAUGE THEORIES [J].
CURCI, G ;
FERRARI, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 35 (03) :273-279
[8]  
DEWITT B, 1967, PHYS REV, V160, P1119
[9]  
Faddeev L.D., 1969, TEOR MAT FYZ, V1, P3, DOI 10.1007/BF01028566
[10]   QUANTIZATION OF RELATIVISTIC SYSTEMS WITH CONSTRAINTS [J].
FRADKIN, ES ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1975, B 55 (02) :224-226