ON FRACTIONAL DIFFERENTIABLE s-CONVEX FUNCTIONS

被引:0
作者
Alomari, M. [1 ]
Darus, M. [1 ]
Dragomir, S. S. [2 ]
Kirmaci, U. S. [3 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi 43600, Selangor, Malaysia
[2] Victoria Univ, Sch Engn & Sci, Math, Melbourne, Vic 8001, Australia
[3] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkey
来源
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS | 2010年 / 3卷 / 01期
关键词
s-Convex function; fractional differentiable function; Jensen inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper some properties of s-convex functions are considered. A combination between local fractional alpha- derivative and s-convexity are introduced and investigated.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
[31]   HERMITE-HADAMARD FEAR-TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS FOR S-CONVEX FUNCTIONS IN THE SECOND SENSE [J].
Qi, Yongfang ;
Li, Guoping ;
Wang, Shan ;
Wen, Qing Zhi .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
[32]   MORE ON OSTROWSKI TYPE INEQUALITIES FOR SOME S-CONVEX FUNCTIONS IN THE SECOND SENSE [J].
Liu, Zheng .
DEMONSTRATIO MATHEMATICA, 2016, 49 (04) :398-412
[33]   Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions [J].
Chen, Feixiang ;
Wu, Shanhe .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02) :705-716
[34]   Generalizations of the Hermite-Hadamard type inequalities for functions whose derivatives are s-convex [J].
Alomari, M. W. ;
Dragomir, S. S. ;
Kirmaci, U. S. .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2013, 17 (02) :157-169
[35]   Some new Hermite-Hadamard type inequalities for s-convex functions and their applications [J].
Ozcan, Serap ;
Iscan, Imdat .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[36]   Some new inequalities of Hermite-Hadamard type for s-convex functions with applications [J].
Khan, Muhammad Adil ;
Chu, Yuming ;
Khan, Tahir Ullah ;
Khan, Jamroz .
OPEN MATHEMATICS, 2017, 15 :1414-1430
[37]   A NOTE ON OSTROWSKI TYPE INEQUALITIES RELATED TO SOME s-CONVEX FUNCTIONS IN THE SECOND SENSE [J].
Liu, Zheng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) :775-785
[38]   A Fractional Version of Corrected Dual-Simpson's Type Inequality via s-convex Function with Applications [J].
Munir, A. ;
Qayyum, A. ;
Budak, H. ;
Qaisar, S. ;
Ali, U. ;
Supadi, S. S. .
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2025, 19 (01) :17-33
[39]   SOME OSTROWSKI ' S TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE s-CONVEX IN THE SECOND SENSE [J].
Set, Erhan ;
Sarikaya, Mehmet Zeki ;
Ozdemir, M. Emin .
DEMONSTRATIO MATHEMATICA, 2014, 47 (01) :37-47
[40]   Some generalizations of Hadamard's-type inequalities through differentiability for s-convex functions and their applications [J].
Muddassar, Muhammad ;
Bhatti, Muhammad Iqbal .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (02) :131-151