ON FRACTIONAL DIFFERENTIABLE s-CONVEX FUNCTIONS

被引:0
作者
Alomari, M. [1 ]
Darus, M. [1 ]
Dragomir, S. S. [2 ]
Kirmaci, U. S. [3 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi 43600, Selangor, Malaysia
[2] Victoria Univ, Sch Engn & Sci, Math, Melbourne, Vic 8001, Australia
[3] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkey
来源
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS | 2010年 / 3卷 / 01期
关键词
s-Convex function; fractional differentiable function; Jensen inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper some properties of s-convex functions are considered. A combination between local fractional alpha- derivative and s-convexity are introduced and investigated.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [21] Some new inequalities of Jensen's type for operator s-convex functions
    Shafiei, Marziyeh
    Ghazanfari, Amir Ghasem
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2018, 45 (01): : 50 - 65
  • [22] SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Alomari, Mohammad W.
    Darus, Maslina
    Kirmaci, Ugur S.
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1643 - 1652
  • [23] A New Inequality on Jain-Saraswat's Divergence for S-Convex Functions
    Chhabra, Praphull
    [J]. CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 465 - 477
  • [24] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Kiris, Mehmet Eyup
    [J]. MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 491 - 501
  • [25] SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Mohammad W. Alomari
    Maslina Darus
    Ugur S. Kirmaci
    [J]. Acta Mathematica Scientia, 2011, 31 (04) : 1643 - 1652
  • [26] REFINEMENT OF HERMITE-HADAMARD TYPE INEQUALITIES FOR S-CONVEX FUNCTIONS
    Krtinic, Dorde
    Mikic, Marija
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 997 - 1005
  • [27] Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    Cerone, P.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1071 - 1076
  • [28] HERMITE-HADAMARD FEAR-TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS FOR S-CONVEX FUNCTIONS IN THE SECOND SENSE
    Qi, Yongfang
    Li, Guoping
    Wang, Shan
    Wen, Qing Zhi
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [29] MORE ON OSTROWSKI TYPE INEQUALITIES FOR SOME S-CONVEX FUNCTIONS IN THE SECOND SENSE
    Liu, Zheng
    [J]. DEMONSTRATIO MATHEMATICA, 2016, 49 (04) : 398 - 412
  • [30] Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 705 - 716