HYPERBOLIC GEOMETRIC VERSIONS OF SCHWARZ'S LEMMA

被引:5
作者
Betsakos, Dimitrios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
Holomorphic function; Schwarz lemma; hyperbolic metric; hyperbolic area; hyperbolic capacity; hyperbolic diameter; condenser; symmetrization;
D O I
10.1090/S1088-4173-2013-00260-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a holomorphic self-map of the unit disk D. We prove monotonicity theorems which involve the hyperbolic area, the hyperbolic capacity, and the hyperbolic diameter of the images under f of hyperbolic disks in D. These theorems lead to distortion and modulus growth theorems that generalize the classical lemma of Schwarz and to geometric estimates for the density of the hyperbolic metric.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 22 条
[11]  
Fryntov Alexander, 1997, ISRAEL MATH C P, V15, P103
[12]  
GEHRING FW, 1971, MICH MATH J, V18, P1
[13]  
Glen D. Anderson, 1997, CANADIAN MATH SOC SE
[14]  
HAYMAN W. K., 1994, CAMBRIDGE TRACTS MAT, V110, DOI 10.1017/CBO9780511526268
[15]  
Polya G., 1951, ANN MATH STUD, V27
[16]  
Pommerenke Ch, 1963, MICH MATH J, V10, P53, DOI 10.1307/mmj/1028998824
[17]   Condenser Capacity and Meromorphic Functions [J].
Pouliasis, Stamatis .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2011, 11 (01) :237-245
[18]  
Tsuji M., 1959, POTENTIAL THEORY MOD
[19]   Isoperimetry for semilinear torsion problems in Riemannian two-manifolds [J].
Xiao, Jie .
ADVANCES IN MATHEMATICS, 2012, 229 (04) :2379-2404
[20]   VOLUME INTEGRAL MEANS OF HOLOMORPHIC FUNCTIONS [J].
Xiao, Jie ;
Zhu, Kehe .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1455-1465