HYPERBOLIC GEOMETRIC VERSIONS OF SCHWARZ'S LEMMA

被引:5
作者
Betsakos, Dimitrios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
Holomorphic function; Schwarz lemma; hyperbolic metric; hyperbolic area; hyperbolic capacity; hyperbolic diameter; condenser; symmetrization;
D O I
10.1090/S1088-4173-2013-00260-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a holomorphic self-map of the unit disk D. We prove monotonicity theorems which involve the hyperbolic area, the hyperbolic capacity, and the hyperbolic diameter of the images under f of hyperbolic disks in D. These theorems lead to distortion and modulus growth theorems that generalize the classical lemma of Schwarz and to geometric estimates for the density of the hyperbolic metric.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 22 条
[1]   Area inequality and Qp norm [J].
Aulaskari, R ;
Chen, HH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (01) :1-24
[2]  
Beardon A. F, 2007, QUASICONFORMAL MAPPI, P9
[3]   A multi-point Schwarz-Pick Lemma [J].
Beardon, AF ;
Minda, D .
JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1) :81-104
[4]   Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius [J].
Betsakos, Dimitrios ;
Pouliasis, Stamatis .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02) :241-250
[5]   MULTI-POINT VARIATIONS OF THE SCHWARZ LEMMA WITH DIAMETER AND WIDTH CONDITIONS [J].
Betsakos, Dimitrios .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) :4041-4052
[6]   GEOMETRIC VERSIONS OF SCHWARZ'S LEMMA FOR QUASIREGULAR MAPPINGS [J].
Betsakos, Dimitrios .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1397-1407
[7]   AREA, CAPACITY AND DIAMETER VERSIONS OF SCHWARZ'S LEMMA [J].
Burckel, Robert B. ;
Marshall, Donald E. ;
Minda, David ;
Poggi-Corradini, Pietro ;
Ransford, Thomas J. .
CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 :133-152
[8]  
Cleanthous G., P AM MATH S IN PRESS
[9]  
Dubinin V. N., 2011, J MATH SCI-U TOKYO, V178, P150
[10]   SYMMETRIZATION IN THE GEOMETRIC-THEORY OF FUNCTIONS OF A COMPLEX VARIABLE [J].
DUBININ, VN .
RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (01) :1-79