A SIMPLE AND FAST HEURISTIC ALGORITHM FOR EDGE-COLORING OF GRAPHS

被引:0
作者
Fiol, M. A. [1 ]
Vilaltella, J. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, BarcelonaTech, Barcelona, Catalonia, Spain
关键词
cubic graph; regular graph; edge-coloring; snark; conflicting vertex; heuristic algorithm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple but empirically efficient heuristic algorithm for the edge-coloring of graphs is presented. Its basic idea is the displacement of 'conflicts' (repeated colors in the edges incident to a vertex) along paths of adjacent vertices whose incident edges are recolored by swapping alternating colors (that is, doing a Kempe interchange). The results of performance tests on random cubic and Delta-regular graphs are presented, and a full implementation of the algorithm is given to facilitate its use and the reproducibility of results.
引用
收藏
页码:263 / 272
页数:10
相关论文
共 8 条
[1]  
Biggs N., 1978, ANN NY ACAD SCI, V319, P71, DOI 10.1111/j.1749-6632.1979.tb32775.x
[2]  
Fiol M.A., 1991, GRAPH THEORY COMBINA, V1, P493
[3]  
Fiorini S., 1977, EDGE COLOURING GRAPH
[4]   CATALAN NUMBERS - INTEGER SEQUENCE THAT MATERIALIZES IN UNEXPECTED PLACES [J].
GARDNER, M .
SCIENTIFIC AMERICAN, 1976, 234 (06) :120-&
[5]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[6]   INFINITE FAMILIES OF NONTRIVIAL TRIVALENT GRAPHS WHICH ARE NOT TAIT COLORABLE [J].
ISAACS, R .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03) :221-239
[7]  
Lee T. T., 2011, ARXIV11041852V1C
[8]   ALMOST-ALL REGULAR GRAPHS ARE HAMILTONIAN [J].
ROBINSON, RW ;
WORMALD, NC .
RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (02) :363-374