Cellular Automata Complexity Threshold and Classification: A Geometric Perspective

被引:1
作者
Al-Emam, Mohamed [1 ,2 ]
Kaurov, Vitaliy [3 ]
机构
[1] Cairo Univ, Fac Engn Elect, Cairo, Egypt
[2] Cairo Univ, Commun Dept, Cairo, Egypt
[3] Wolfram Res Inc, Champaign, IL 61820 USA
来源
COMPLEX SYSTEMS | 2014年 / 23卷 / 04期
关键词
D O I
10.25088/ComplexSystems.23.4.355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the results of mathematical experiments on the so-called "orientation vector." It looks at complexity in terms of three perspectives: Wolfram, Langton, and Chua. Critically, we consider Chua's geometrical complexity index and a complexity-based classification of elementary cellular automata. Ideas in terms of solutions for ordinary differential equations and complexity measurements are proposed to the research community for discussion.
引用
收藏
页码:355 / 376
页数:22
相关论文
共 5 条
  • [1] CHUA LO, 2006, NONLINEAR DYNAMICS P, V0001
  • [2] COMPUTATION AT THE EDGE OF CHAOS - PHASE-TRANSITIONS AND EMERGENT COMPUTATION
    LANGTON, CG
    [J]. PHYSICA D, 1990, 42 (1-3): : 12 - 37
  • [3] Slotine J.-J.E., 1991, APPL NONLINEAR CONTR
  • [4] Sprott J.C., 2010, ELEGANT CHAOS ALGEBR
  • [5] Wolfram S., 2002, NEW KIND SCI