SPECTRAL CONDITIONS FOR SOJOURN AND EXTREME VALUE LIMIT-THEOREMS FOR GAUSSIAN-PROCESSES

被引:3
|
作者
BERMAN, SM
机构
[1] Courant Institute of Mathematical Sciences, New York University, New York
基金
美国国家科学基金会;
关键词
STATIONARY GAUSSIAN PROCESSES; SPECTRAL DENSITY FUNCTION; MIXING CONDITION; SOJOURN ABOVE A LEVEL; EXTREME VALUE;
D O I
10.1016/0304-4149(91)90079-R
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X(t), t greater-than-or-equal-to 0, be a stationary Gaussian process, and define the sojourn time L(u)(t) = mes{s: 0 less-than-or-equal-to s less-than-or-equal-to t, X (s) > u} and the maximum Z(t) = max(X(s): 0 less-than-or-equal-to s less-than-or-equal-to t). Limit theorems for the distributions of L(u)(t) and Z(t), for t, u --> infinity, are obtained under specified conditions on the spectral density of the process. The results supplement earlier theorems obtained under suitable conditions on the covariance function.
引用
收藏
页码:201 / 220
页数:20
相关论文
共 50 条