NEW BISPHOSPHONATES IN OSTEOPOROSIS

被引:0
作者
FLEISCH, H
机构
关键词
BISPHOSPHONATES; BONE RESORPTION; OSTEOPOROSIS; TREATMENT;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Bisphosphonates are non-biodegradable compounds characterized by a phosphorus-carbon-phosphorus bond. By substituting the hydrogens on the carbon atom, a variety of bisphosphonates can be synthesized, each with distinct physical-chemical, biologic, therapeutic, and toxicologic characteristics. Bisphosphonates have in general a strong affinity to calcium phosphates, both in vitro and in vivo. They inhibit bone resorption through a cellular mechanism that is not yet completely understood. When given in large amounts, some bisphosphonates can inhibit normal and ectopic mineralization through a physical-chemical mechanism. The main difference among the various compounds appears to be their potency in inhibiting bone resorption, which can vary from 1 to 10 000. The potential efficacy of bisphosphonates in osteoporosis has been investigated extensively in animals. In the growing rat, they induce an increase in intestinal absorption and body retention of calcium. Various types of experimental osteoporosis, such as induced by immobilization, ovariectomy, administration of corticosteroids, or low calcium diet, can be prevented. Bisphosphonates are rapidly cleared from plasma, with 20%-60% deposited in bone and the remainder excreted in the urine. The half-life in bone is, however, very long. The toxicity of bisphosphonates is low, probably because of their rapid plasma and soft tissue clearance. It varies greatly from compound to compound. Bisphosphonates are used successfully in diseases with increased bone turnover, such as Paget's disease of bone, tumoral bone disease, and recently, osteoporosis. Most results in osteoporosis have been obtained with etidronate and pamidronate. Both of these compounds, as well as other bisphosphonates, such as tiludronate, alendronate, and clodronate, inhibit bone loss and sometimes even increase bone mass. The effect on the rate of fractures has not yet been established, although early results are promising. It is not known whether newer bisphosphonates will present advantages other than an increase in activity. It appears that as a class, bisphosphonates are likely to become an important addition to the therapeutic means available for the prevention and treatment of osteoporosis.
引用
收藏
页码:S15 / S22
页数:8
相关论文
共 76 条
[1]  
AMMAN P, 1992, BONE MINER S1, V17, pS11
[2]   PRELIMINARY-OBSERVATIONS OF A FORM OF COHERENCE THERAPY FOR OSTEOPOROSIS [J].
ANDERSON, C ;
CAPE, RDT ;
CRILLY, RG ;
HODSMAN, AB ;
WOLFE, BMJ .
CALCIFIED TISSUE INTERNATIONAL, 1984, 36 (03) :341-343
[3]  
APSELOFF G, 1991, CURR THER RES CLIN E, V50, P794
[4]  
BARBIER A, 1990, 3RD INT S OST COP, P1127
[5]  
BIJVOET OLM, 1978, ENDOCRINOLOGY CALCIU, V421, P48
[6]  
BOONEKAMP PM, 1986, BONE MINER, V1, P27
[7]  
BOONEKAMP PM, 1987, BONE MINER, V2, P29
[8]   INHIBITION OF BONE-MINERAL LOSS DURING LACTATION BY CL2MBP [J].
BROMMAGE, R ;
BAXTER, DC .
CALCIFIED TISSUE INTERNATIONAL, 1990, 47 (03) :169-172
[9]  
CHESTNUT CH, 1988, OSTEOPOROSIS ETIOLOG, P403
[10]  
DEVOGELAER JP, 1990, 3RD INT S OST COP, P1507