ASYMPTOTICS OF DIRICHLET SPECTRUM ON SOME CLASS OF NONCOMPACT DOMAINS

被引:2
作者
PARNOVSKI, LB [1 ]
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,DEPT MATH,MOSCOW 117234,RUSSIA
关键词
D O I
10.1002/mana.19951740118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the asymptotic behaviour of the counting function of Dirichlet eigenvalues on some class of noncompact manifolds. We prove that in cases when the volume or the perimeter (the volume of the boundary) of the manifold is infinite, some additional (nonclassical) terms appear in the precise asymptotics. The coefficients at the classical terms in those are regularized in some special way volume (resp. perimeter) of the manifold.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 12 条
[1]  
AGMON S, 1968, ARCH RATION MECH AN, V28, P165
[2]  
IVRII VY, 1986, FUNCT ANAL APPL, V20, P29
[3]  
IVRII VY, 1983, FUNCT ANAL APPL, V27, P71
[4]  
LEVITAN BM, 1990, FUNCT ANAL APPL, V24, P21
[5]  
ROZENBLJUM VG, 1972, MATH USSR SB, V18, P235
[6]   NON-CLASSICAL EIGENVALUE ASYMPTOTICS [J].
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 53 (01) :84-98
[7]   REFINED ASYMPTOTIC-EXPANSION FOR THE PARTITION-FUNCTION OF UNBOUNDED QUANTUM BILLIARDS [J].
STEINER, F ;
TRILLENBERG, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (07) :1670-1676
[8]   ASYMPTOTIC-DISTRIBUTION OF EIGENVALUES OF LAPLACE OPERATOR IN AN UNBOUNDED DOMAIN [J].
TAMURA, H .
NAGOYA MATHEMATICAL JOURNAL, 1976, 60 (FEB) :7-33
[9]   DIRICHLET-NEUMANN BRACKETING FOR HORN-SHAPED REGIONS [J].
VANDENBERG, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 104 (01) :110-120
[10]  
VASSILIEV DG, 1983, FUNCT ANAL APPL, V17, P79