Involutions, odd degree extensions and generic splitting

被引:10
作者
Black, Jodi [1 ]
Queguiner-Mathieu, Anne [2 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Univ Paris 13, LAGA, CNRS UMR 7539, Sorbonne Paris Cite, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
来源
ENSEIGNEMENT MATHEMATIQUE | 2014年 / 60卷 / 3-4期
关键词
Algebraic groups; algebras with involution; quadratic forms; odd degree field extensions; Springer's theorem; isotropy;
D O I
10.4171/LEM/60-3/4-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q be a quadratic form over a field F and let L be a field extension of F of odd degree. It is a classical result that if qL is isotropic (resp. hyperbolic) then q is isotropic (resp. hyperbolic). In turn, given two quadratic forms q, q' over F, if qL congruent to q'(L) then q congruent to q' . It is natural to ask whether similar results hold for algebras with involution. We give a general overview of recent and important progress on these three questions, with particular attention to the relevance of hyperbolicity, isotropy and isomorphism over some appropriate function field. In addition, we prove the anisotropy property in some new low degree cases.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 31 条
[1]   Open problems on central simple algebras [J].
Auel, Asher ;
Brussel, Eric ;
Garibaldi, Skip ;
Vishne, Uzi .
TRANSFORMATION GROUPS, 2011, 16 (01) :219-264
[2]   Similitudes of algebras with involution under odd-degree extensions [J].
Barquero-Salavert, PB .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) :625-632
[3]   HYPERBOLIC INVOLUTIONS [J].
BAYERFLUCKIGER, E ;
SHAPIRO, DB ;
TIGNOL, JP .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (03) :461-476
[4]   FORMS IN ODD DEGREE EXTENSIONS AND SELF-DUAL NORMAL BASES [J].
BAYERFLUCKIGER, E ;
LENSTRA, HW .
AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (03) :359-373
[5]   A proof of the Pfister factor conjecture [J].
Becher, Karim Johannes .
INVENTIONES MATHEMATICAE, 2008, 173 (01) :1-6
[6]  
BLACK J., 2011, THESIS
[7]   Zero cycles of degree one on principal homogeneous spaces [J].
Black, Jodi .
JOURNAL OF ALGEBRA, 2011, 334 (01) :232-246
[8]   Skew-hermitian forms which become hyperbolic over a splitting field [J].
Dejaiffe, I .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (02) :105-108
[9]  
Elman R., 2008, AM MATH SOC C PUBLIC, V56, DOI 10:1090/coll/056
[10]   Similarity of quadratic forms and half-neighbors [J].
Hoffmann, DW .
JOURNAL OF ALGEBRA, 1998, 204 (01) :255-280