EXISTENCE THEOREM FOR ABEL INTEGRAL-EQUATIONS

被引:31
作者
ATKINSON, KE [1 ]
机构
[1] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52240
关键词
D O I
10.1137/0505071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:729 / 736
页数:8
相关论文
共 50 条
[31]   PERIODICITY THRESHOLD THEOREM FOR SOME NONLINEAR INTEGRAL-EQUATIONS [J].
NUSSBAUM, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1978, 9 (02) :356-376
[32]   EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL-EQUATIONS OF HAMMERSTEIN TYPE [J].
BREZIS, H ;
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :73-78
[33]   EXISTENCE AND UNIQUENESS OF SOLUTIONS TO ABSTRACT VOLTERRA INTEGRAL-EQUATIONS [J].
KIFFE, T ;
STECHER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (02) :169-175
[34]   CONNECTION BETWEEN LEVINSONS THEOREM AND SINGULAR INTEGRAL-EQUATIONS [J].
BECCHI, CM ;
COLLINA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (10) :1499-&
[35]   EXISTENCE, UNIQUENESS, AND CONVERGENCE OF SOLUTIONS OF STOCHASTIC INTEGRAL-EQUATIONS [J].
PROTTER, PE .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04) :A477-A477
[36]   EXISTENCE AND UNIQUENESS OF THE SOLUTIONS OF DELAY STOCHASTIC INTEGRAL-EQUATIONS [J].
MAO, X .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1989, 7 (01) :59-74
[37]   ON SOLVABILITY OF A CERTAIN CLASS OF THE ABEL TYPE TWO-DIMENSIONAL INTEGRAL-EQUATIONS [J].
TUAN, VK ;
GRINKEVICH, GV .
DOKLADY AKADEMII NAUK BELARUSI, 1987, 31 (07) :589-592
[38]   PRODUCT INTEGRATION METHODS FOR 2ND-KIND ABEL INTEGRAL-EQUATIONS [J].
CAMERON, RF ;
MCKEE, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) :1-10
[39]   INTEGRAL-EQUATIONS [J].
IMANALIEV, MI ;
KHVEDELIDZE, BV ;
GEGELIYA, TG ;
BABAEV, AA ;
BOTASHEV, AI .
DIFFERENTIAL EQUATIONS, 1982, 18 (12) :1442-1458
[40]   ON NONDEGENERATE AND DEGENERATE NONLINEAR ABEL INTEGRAL-EQUATIONS OF THE 1ST KIND [J].
ANG, DD ;
GORENFLO, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (01) :63-72