IMPROVED ERROR-BOUNDS FOR NEAR-MINIMAX APPROXIMATIONS

被引:1
作者
ELLIOTT, D
PHILLIPS, GM
机构
[1] UNIV TASMANIA,DEPT MATH,HOBART,TAS 7005,AUSTRALIA
[2] UNIV ST ANDREWS,INST MATH,ST ANDREWS KY16 9SS,FIFE,SCOTLAND
来源
BIT | 1991年 / 31卷 / 02期
关键词
ERROR BOUNDS; DIVIDED DIFFERENCES; NEAR MINIMAX POLYNOMIAL APPROXIMATIONS;
D O I
10.1007/BF01931286
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given f is-an-element-of C(n + 1)[-1,1], a polynomial p(n), of degree less-than-or-equal-to n, is said to be near-minimax if (*) parallel-to f - p(n) parallel-to infinity = 2-n\f(n+1)(xi)\/(n+1)!, for some xi is-an-element-of (-1,1). For three sets of near-minimax approximations, by considering the form of the error parallel-to f - p(n) parallel-to infinity in terms of divided differences, it is shown that better upper and lower bounds can be found than those given by (*).
引用
收藏
页码:262 / 275
页数:14
相关论文
共 9 条
[1]  
Bernstein S., 1926, LECONS PROPRIETES EX
[2]   ERROR-ESTIMATES FOR LEAST-SQUARES APPROXIMATION BY POLYNOMIALS [J].
BRASS, H .
JOURNAL OF APPROXIMATION THEORY, 1984, 41 (04) :345-349
[3]  
Cheney E.W., 1982, INTRO APPROXIMATION, V2nd ed.
[4]  
DEBRUIJN NG, 1958, ASYMPTOTIC METHODS
[5]   ERROR OF TRUNCATED CHEBYSHEV SERIES AND OTHER NEAR MINIMAX POLYNOMIAL APPROXIMATIONS [J].
ELLIOTT, D ;
PAGET, DF ;
PHILLIPS, GM ;
TAYLOR, PJ .
JOURNAL OF APPROXIMATION THEORY, 1987, 50 (01) :49-57
[6]  
ELLIOTT D, IN PRESS CONSTRUCTIV
[7]  
Milne-Thomson L.M, 1960, CALCULUS FINITE DIFF
[8]   ESTIMATE OF MAXIMUM ERROR IN BEST POLYNOMIAL APPROXIMATIONS [J].
PHILLIPS, GM .
COMPUTER JOURNAL, 1968, 11 (01) :110-&
[9]   POLYNOMIAL-APPROXIMATION USING EQUIOSCILLATION ON THE EXTREME-POINTS OF TSCHEBYSCHEV POLYNOMIALS [J].
PHILLIPS, GM ;
TAYLOR, PJ .
JOURNAL OF APPROXIMATION THEORY, 1982, 36 (03) :257-264