CRISIS IN CHAOTIC SCATTERING

被引:34
作者
LAI, YC
GREBOGI, C
BLUMEL, R
KAN, I
机构
[1] JOHNS HOPKINS UNIV,SCH MED,DEPT BIOMED ENGN,BALTIMORE,MD 21205
[2] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLL PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[4] UNIV DELAWARE,DEPT PHYS & ASTRON,NEWARK,DE 19716
[5] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
关键词
D O I
10.1103/PhysRevLett.71.2212
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that in a chaotic scattering system the stable and unstable foliations of isolated chaotic invariant sets can become heteroclinically tangent to each other at an uncountably infinite number of parameter values. The first tangency, which is a crisis in chaotic scattering, provides the link between the chaotic sets. A striking consequence is that the fractal dimension of the set of singularities in the scattering function increases in the parameter range determined by the first and the last tangencies. This leads to a proliferation of singularities in the scattering function and, consequently, to an enhancement of chaotic scattering.
引用
收藏
页码:2212 / 2215
页数:4
相关论文
共 27 条
[1]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121
[2]   ROUTES TO CHAOTIC SCATTERING [J].
BLEHER, S ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :919-922
[3]   ISOLATED UNSTABLE PERIODIC ORBITS [J].
CHURCHILL, RC ;
PECELLI, G ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) :329-348
[4]   TRANSITION TO CHAOTIC SCATTERING [J].
DING, M ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1990, 42 (12) :7025-7040
[5]   MASSIVE BIFURCATION OF CHAOTIC SCATTERING [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICS LETTERS A, 1991, 153 (01) :21-26
[6]   INTEGRABLE AND CHAOTIC MOTIONS OF 4 VORTICES .2. COLLISION DYNAMICS OF VORTEX PAIRS [J].
ECKHARDT, B ;
AREF, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 326 (1593) :655-696
[7]  
ECKHARDT B, 1988, EPL-EUROPHYS LETT, V61, P329
[8]  
GASPARD P, 1989, J CHEM PHYS, V90, P2225, DOI 10.1063/1.456017
[9]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 37 (05) :1711-1724
[10]   FINAL-STATE SENSITIVITY - AN OBSTRUCTION TO PREDICTABILITY [J].
GREBOGI, C ;
MCDONALD, SW ;
OTT, E ;
YORKE, JA .
PHYSICS LETTERS A, 1983, 99 (09) :415-418