From patient-specific mathematical neuro-oncology to precision medicine

被引:65
作者
Baldock, A. L. [1 ,2 ]
Rockne, R. C. [1 ,2 ,7 ]
Boone, A. D. [3 ]
Neal, M. L. [3 ,4 ]
Hawkins-Daarud, A. [1 ,2 ]
Corwin, D. M. [1 ,2 ]
Bridge, C. A. [1 ,2 ]
Guyman, L. A. [1 ,2 ]
Trister, A. D. [5 ]
Mrugala, M. M. [6 ]
Rockhill, J. K. [5 ]
Swanson, K. R. [1 ,2 ,7 ]
机构
[1] Northwestern Univ, Dept Neurol Surg, Chicago, IL 60611 USA
[2] Northwestern Univ, Brain Tumor Inst, Chicago, IL 60611 USA
[3] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA
[5] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA
[6] Univ Washington, Dept Neurol, Seattle, WA 98195 USA
[7] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
glioma; mathematical modeling; patient-specific; clinical modeling; personalized medicine; individualized health care;
D O I
10.3389/fonc.2013.00062
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO) is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern "precision medicine" approaches to tailor therapy in a patient-specific manner. Patient-specific models (PSMs) can be used to overcome imaging limitations, improve prognostic predictions, stratify patients, and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific MNO.
引用
收藏
页数:11
相关论文
共 62 条
[41]   Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas [J].
Pallud, Johan ;
Mandonnet, Emmanuel ;
Duffau, Hugues ;
Kujas, Michele ;
Guillevin, Remy ;
Galanaud, Damien ;
Taillandier, Luc ;
Capelle, Laurent .
ANNALS OF NEUROLOGY, 2006, 60 (03) :380-383
[42]   Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy [J].
Powathil, G. ;
Kohandel, M. ;
Sivaloganathan, S. ;
Oza, A. ;
Milosevic, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (11) :3291-3306
[43]   Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach [J].
Rockne, R. ;
Rockhill, J. K. ;
Mrugala, M. ;
Spence, A. M. ;
Kalet, I. ;
Hendrickson, K. ;
Lai, A. ;
Cloughesy, T. ;
Alvord, E. C., Jr. ;
Swanson, K. R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (12) :3271-3285
[44]   A mathematical model for brain tumor response to radiation therapy [J].
Rockne, R. ;
Alvord, E. C., Jr. ;
Rockhill, J. K. ;
Swanson, K. R. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (4-5) :561-578
[45]   Simple ODE models of tumor growth and anti-angiogenic or radiation treatment [J].
Sachs, RK ;
Hlatky, LR ;
Hahnfeldt, P .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (12-13) :1297-1305
[46]   A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme:: studies on the effect of clonogenic cell density [J].
Stamatakos, G. S. ;
Antipas, V. P. ;
Uzunoglu, N. K. ;
Dale, R. G. .
BRITISH JOURNAL OF RADIOLOGY, 2006, 79 (941) :389-400
[47]   High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Stupp, R. ;
Tonn, J. -C. ;
Brada, M. ;
Pentheroudakis, G. .
ANNALS OF ONCOLOGY, 2010, 21 :v190-v193
[48]   Chemoradiotherapy in malignant glioma: Standard of care and future directions [J].
Stupp, Roger ;
Hegi, Monika E. ;
Gilbert, Mark R. ;
Chakravarti, Arnab .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (26) :4127-4136
[49]   Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle [J].
Swanson, K. R. ;
Harpold, H. L. P. ;
Peacock, D. L. ;
Rockne, R. ;
Pennington, C. ;
Kilbride, L. ;
Grant, R. ;
Wardlaw, J. M. ;
Alvord, E. C., Jr. .
CLINICAL ONCOLOGY, 2008, 20 (04) :301-308
[50]   A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle [J].
Swanson, K. R. ;
Rostomily, R. C. ;
Alvord, E. C., Jr. .
BRITISH JOURNAL OF CANCER, 2008, 98 (01) :113-119