From patient-specific mathematical neuro-oncology to precision medicine

被引:60
作者
Baldock, A. L. [1 ,2 ]
Rockne, R. C. [1 ,2 ,7 ]
Boone, A. D. [3 ]
Neal, M. L. [3 ,4 ]
Hawkins-Daarud, A. [1 ,2 ]
Corwin, D. M. [1 ,2 ]
Bridge, C. A. [1 ,2 ]
Guyman, L. A. [1 ,2 ]
Trister, A. D. [5 ]
Mrugala, M. M. [6 ]
Rockhill, J. K. [5 ]
Swanson, K. R. [1 ,2 ,7 ]
机构
[1] Northwestern Univ, Dept Neurol Surg, Chicago, IL 60611 USA
[2] Northwestern Univ, Brain Tumor Inst, Chicago, IL 60611 USA
[3] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA
[5] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA
[6] Univ Washington, Dept Neurol, Seattle, WA 98195 USA
[7] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
来源
FRONTIERS IN ONCOLOGY | 2013年 / 3卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
glioma; mathematical modeling; patient-specific; clinical modeling; personalized medicine; individualized health care;
D O I
10.3389/fonc.2013.00062
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO) is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern "precision medicine" approaches to tailor therapy in a patient-specific manner. Patient-specific models (PSMs) can be used to overcome imaging limitations, improve prognostic predictions, stratify patients, and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific MNO.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Integrative mathematical oncology [J].
Anderson, Alexander R. A. ;
Quaranta, Vito .
NATURE REVIEWS CANCER, 2008, 8 (03) :227-234
[2]  
BALDOCK AL, 2012, NEURO ONCOLOGY S6, V14, P131
[3]   Effects of radiation on a three-dimensional model of malignant glioma invasion [J].
Bauman, GS ;
Fisher, BJ ;
McDonald, W ;
Amberger, VR ;
Moore, E ;
Del Maestro, RF .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 1999, 17 (5-6) :643-651
[4]   Magnetic Resonance Imaging Characteristics of Glioblastoma Multiforme: Implications for Understanding Glioma Ontogeny [J].
Bohman, Leif-Erik ;
Swanson, Kristin R. ;
Moore, Julia L. ;
Rockne, Russ ;
Mandigo, Christopher ;
Hankinson, Todd ;
Assanah, Marcela ;
Canoll, Peter ;
Bruce, Jeffrey N. .
NEUROSURGERY, 2010, 67 (05) :1319-1327
[5]   Heterogeneity Maintenance in Glioblastoma: A Social Network [J].
Bonavia, Rudy ;
Inda, Maria-del-Mar ;
Cavenee, Webster K. ;
Furnari, Frank B. .
CANCER RESEARCH, 2011, 71 (12) :4055-4060
[6]  
Boone AE, 2010, NEURO-ONCOLOGY, V12, P118
[7]   Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas [J].
Brandsma, Dieto ;
Stalpers, Lukas ;
Taal, Walter ;
Sminia, Peter ;
van den Bent, Martinj .
LANCET ONCOLOGY, 2008, 9 (05) :453-461
[8]   Pseudoprogression and pseudoresponse: Challenges in brain tumor imaging [J].
Clarke, Jennifer L. ;
Chang, Susan .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2009, 9 (03) :241-246
[9]   Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation [J].
Clatz, O ;
Sermesant, M ;
Bondiau, PY ;
Delingette, H ;
Warfield, SK ;
Malandain, G ;
Ayache, N .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (10) :1334-1346
[10]   A fully automatic and robust brain MRI tissue classification method (vol 7, pg 513, 2003) [J].
Cocosco, CA ;
Zijdenbos, AP ;
Evans, AC .
MEDICAL IMAGE ANALYSIS, 2004, 8 (01) :93-94