New (3+1)-dimensional nonlinear evolution equation: multiple soliton solutions

被引:24
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
onlinear (3+1)-dimensional equation; Hirota bilinear method; tanh method; multiple soliton solutions; resonance;
D O I
10.2478/s13531-013-0173-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we introduce an extended (3+1)-dimensional nonlinear evolution equation. We determine multiple soliton solutions by using the simplified Hirota's method. In addition, we establish a variety of travelling wave solutions by using hyperbolic and trigonometric ansatze.
引用
收藏
页码:352 / 356
页数:5
相关论文
共 16 条
[1]   New exact solutions and conservation laws of a coupled Kadomtsev-Petviashvili system [J].
Adem, Abdullahi Rashid ;
Khalique, Chaudry Masood .
COMPUTERS & FLUIDS, 2013, 81 :10-16
[2]   A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation [J].
Dehghan, Mehdi ;
Salehi, Rezvan .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (05) :1939-1956
[3]   Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations [J].
Geng, XG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (09) :2289-2303
[4]   N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation [J].
Geng, Xianguo ;
Ma, Yunling .
PHYSICS LETTERS A, 2007, 369 (04) :285-289
[5]   Symbolic methods to construct exact solutions of nonlinear partial differential equations [J].
Hereman, W ;
Nuseir, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :13-27
[6]   RESONANCE OF SOLITONS IN ONE DIMENSION [J].
HIROTA, R ;
ITO, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (03) :744-748
[7]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI DOI 10.1017/CBO9780511543043
[8]   Linear superposition principle applying to Hirota bilinear equations [J].
Ma, Wen-Xiu ;
Fan, Engui .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :950-959
[9]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[10]   The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations [J].
Malfliet, W .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 :529-541