REGULARITY OF HARMONIC MAPS FROM THE MINKOWSKI SPACE INTO ROTATIONALLY SYMMETRICAL MANIFOLDS

被引:59
作者
SHATAH, J
TAHVILDARZADEH, A
机构
关键词
D O I
10.1002/cpa.3160450803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global regularity for the solution to the Cauchy problem with regular data for an equivariant harmonic map from the 2 + 1 -dimensional Minkowski space into a two-dimensional, rotationally symmetric, and geodesically convex Riemannian manifold.
引用
收藏
页码:947 / 971
页数:25
相关论文
共 10 条
[1]   A MATHEMATICAL-THEORY OF GRAVITATIONAL COLLAPSE [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (04) :613-647
[2]   THE CAUCHY-PROBLEM FOR THE O(N), CP(N-1), AND GC(N,P) MODELS [J].
GINIBRE, J ;
VELO, G .
ANNALS OF PHYSICS, 1982, 142 (02) :393-415
[3]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[4]  
GU HC, 1980, COMMUN PUR APPL MATH, V33, P727
[5]  
KOVALYOV M, 1985, THESIS NEW YORK U
[7]   GLOBAL EXISTENCE OF HARMONIC MAPS IN MINKOWSKI SPACE [J].
SIDERIS, TC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (01) :1-13
[8]  
STRAUSS W, 1978, INVARIANT WAVE EQUAT, P197
[9]  
STRUWE M, 1988, ANN SCUOLA NORM-SCI, V15, P495
[10]  
[No title captured]