STABILITY ANALYSIS OF NUMERICAL-METHODS FOR DELAY DIFFERENTIAL-EQUATIONS
被引:53
|
作者:
HOUT, KJI
论文数: 0引用数: 0
h-index: 0
机构:
LEIDEN UNIV,DEPT MATH & COMP SCI,NIELS BOHRWEG 1,2333 CA LEIDEN,NETHERLANDSLEIDEN UNIV,DEPT MATH & COMP SCI,NIELS BOHRWEG 1,2333 CA LEIDEN,NETHERLANDS
HOUT, KJI
[1
]
SPIJKER, MN
论文数: 0引用数: 0
h-index: 0
机构:
LEIDEN UNIV,DEPT MATH & COMP SCI,NIELS BOHRWEG 1,2333 CA LEIDEN,NETHERLANDSLEIDEN UNIV,DEPT MATH & COMP SCI,NIELS BOHRWEG 1,2333 CA LEIDEN,NETHERLANDS
SPIJKER, MN
[1
]
机构:
[1] LEIDEN UNIV,DEPT MATH & COMP SCI,NIELS BOHRWEG 1,2333 CA LEIDEN,NETHERLANDS
This paper deals with the stability analysis of step-by-step methods for the numerical solution of delay differential equations. We focus on the behaviour of such methods when they are applied to the linear testproblem U'(t) = lambda-U(t) + mu-U(t - tau) with tau > 0 and lambda, mu-complex. A general theorem is presented which can be used to obtain complete characterizations of the stability regions of these methods.