Hydroxynitrile lyases (HNLs) are powerful carbon-carbon bond forming enzymes. The reverse of their natural reaction - the stereoselective addition of hydrogen cyanide (HCN) to carbonyls - yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Recently, bacterial HNLs have been discovered, which represent a completely new type: HNLs with a cupin fold. Due to various benefits of cupins (e.g. high yield recombinant expression in Escherichia coli), the class of cupin HNLs provides a new source for interesting, powerful hydroxynitrile lyases in the ongoing search for HNLs with improved activity, enantioselectivity, stability and substrate scope. In this study, database mining revealed a novel cupin HNL from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other cupin HNLs. (C) 2014 Wiedner et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Biotechnology.