ESTIMATION OF INTEGRAL FUNCTIONALS OF A DENSITY

被引:94
作者
BIRGE, L
MASSART, P
机构
[1] UNIV PARIS 11,DEPT MATH,CNRS,URA 743,F-91405 ORSAY,FRANCE
[2] MSRI,BERKELEY,CA
关键词
QUADRATIC FUNCTIONALS OF A DENSITY; SEMIPARAMETRIC ESTIMATION; KERNEL ESTIMATORS; INTEGRAL FUNCTIONALS; NONPARAMETRIC RATES OF CONVERGENCE;
D O I
10.1214/aos/1176324452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let phi be a smooth function of k + 2 variables. We shall investigate in this paper the rates of convergence of estimators of T(f) = integral phi(f(x), f'(x),..., f((k))(x), x) dx when f belongs to some class of densities of smoothness s. We prove that, when s greater than or equal to 2k + 1/4, one can define an estimator (T) over cap(n) of T(f), based on n i.i.d. observations of density f on the real line, which converges at the semiparametric rate 1/root n. On the other hand, when s < 2k + 1/4, T(f) cannot be estimated at a rate faster than n(-gamma) with gamma = 4(s - k)/[4s + 1]. We shall also provide some extensions to the multidimensional case. Those results extend previous works of Levit, of Bickel and Ritov and of Donoho and Nussbaum on estimation of quadratic functionals.
引用
收藏
页码:11 / 29
页数:19
相关论文
共 19 条
[1]  
ASSOUAD P, 1983, CR ACAD SCI I-MATH, V296, P1021
[2]  
BICKEL P, 1988, SANKHYA A, V50, P351
[3]  
BIRGE L, 1985, PROBAB THEORY REL, V71, P271
[4]   ESTIMATION OF DENSITIES - MINIMAL RISK [J].
BRETAGNOLLE, J ;
HUBER, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (02) :119-137
[5]  
Donoho D. L., 1990, Journal of Complexity, V6, P290, DOI 10.1016/0885-064X(90)90025-9
[6]   ONE-SIDED INFERENCE ABOUT FUNCTIONALS OF A DENSITY [J].
DONOHO, DL .
ANNALS OF STATISTICS, 1988, 16 (04) :1390-1420
[7]  
DONOHO DL, 1991, ANN STAT, V19, P633, DOI 10.1214/aos/1176348114
[8]   ENTROPY-BASED TESTS OF UNIFORMITY [J].
DUDEWICZ, EJ ;
VANDERMEULEN, EC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :967-974
[9]   ESTIMATION OF INTEGRATED SQUARED DENSITY DERIVATIVES [J].
HALL, P ;
MARRON, JS .
STATISTICS & PROBABILITY LETTERS, 1987, 6 (02) :109-115
[10]  
Hasminskii RafaelZ., 1978, P 2 PRAGUE S ASYMPTO, P41