SCALING LAWS AND BIFURCATION

被引:0
|
作者
ASTON, PJ
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Equations with symmetry often have solution branches which are related by a simple rescaling. This property can be expressed in terms of a scaling law which is similar to the equivariance condition except that it also involves the parameters of the problem. We derive a natural context for the existence of such scaling laws based on the symmetry of the problem and show how bifurcation points can also be related by a scaling. This leads in some cases, to a proof of existence of bifurcating branches at a mode interaction. The results are illustrated for the Kuramoto-Sivashinsky equation.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [11] ALCATOR SCALING LAWS
    PAPPAS, DS
    DEVILLIERS, J
    HELAVA, H
    PARKER, RR
    TAYLOR, RJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1360 - 1360
  • [12] Scaling laws in the drier
    Ricard Solé
    Nature, 2007, 449 : 151 - 153
  • [13] INTERDIMENSIONAL SCALING LAWS
    IMRY, Y
    DEUTSCHER, G
    BERGMAN, DJ
    ALEXANDER, S
    PHYSICAL REVIEW A, 1973, 7 (02) : 744 - 746
  • [14] QUASINEUTRAL SCALING LAWS
    ELLIOTT, CJ
    PHYSICS OF FLUIDS, 1973, 16 (02) : 333 - 334
  • [15] ASYMMETRICAL SCALING LAWS
    KUNZ, H
    HELVETICA PHYSICA ACTA, 1969, 42 (04): : 618 - &
  • [16] Scaling Laws in Robotics
    Dermitzakis, Konstantinos
    Carbajal, Juan Pablo
    Marden, James H.
    PROCEEDINGS OF THE 2ND EUROPEAN FUTURE TECHNOLOGIES CONFERENCE AND EXHIBITION 2011 (FET 11), 2011, 7 : 250 - 252
  • [17] CORRECTIONS TO SCALING LAWS
    WEGNER, FJ
    PHYSICAL REVIEW B, 1972, 5 (11): : 4529 - &
  • [18] SCALING LAWS IN FRACTURE
    DE ARCANGELIS, L
    HANSEN, A
    HERRMANN, HJ
    ROUX, S
    PHYSICAL REVIEW B, 1989, 40 (01) : 877 - 880
  • [19] Scaling laws in the macroeconomy
    Gatti, D. Delli
    Di Guilmi, C.
    Gallegati, M.
    Gaffeo, E.
    Giulioni, G.
    Palestrini, A.
    ADVANCES IN COMPLEX SYSTEMS, 2008, 11 (01): : 131 - 138
  • [20] Scaling laws in turbulence
    Josserand, Christophe
    Le Berre, Martine
    Pomeau, Yves
    CHAOS, 2020, 30 (07)