INDEPENDENT SETS IN REGULAR GRAPHS AND SUM-FREE SUBSETS OF FINITE-GROUPS

被引:79
作者
ALON, N
机构
[1] Department of Mathematics Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
关键词
D O I
10.1007/BF02772952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that there exists a function-epsilon (k) which tends to 0 as k tends to infinity, such that any k-regular graph on n vertices contains at most 2(1/2 + epsilon (k))n independent sets. This settles a conjecture of A. Granville and has several applications in Combinatorial Group Theory.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 11 条
[1]  
ALGOR I, 1989, DISCRETE MATH, V5, P11
[2]  
Baker A., 1990, TRIBUTE P ERDOS, P13
[3]  
CALKIN NJ, IN PRESS NUMBER SUM
[4]  
CAMERON P. J., 1987, LONDON MATH SOC LECT, V123, P13
[5]  
CAMERON PJ, IN PRESS 1988 P CAN
[6]  
ERDOS P, 1974, PROBABILISTIC METHOD, P18
[7]  
Graham R. L., 1980, RAMSEY THEORY
[8]  
Katona G., 1968, THEOREM FINITE SETS, P187
[9]  
Kruskal J.B, 1963, NUMBER SIMPLICES COM, P251
[10]  
Riccio L, 1998, INFINITE FINITE SETS