VARIATIONAL WAVE-FUNCTION FOR NONUNIFORM, NONCOLLINEAR S=1/2 QUANTUM ANTIFERROMAGNETS

被引:1
作者
HENLEY, CL [1 ]
LARSON, BE [1 ]
机构
[1] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
关键词
D O I
10.1063/1.345952
中图分类号
O59 [应用物理学];
学科分类号
摘要
The "Marshall-Huse-Elser" variational wave functions describe ordered planar (possibly noncollinear) ground states of s=1/2 Heisenberg spin-exchange Hamiltonians. We show how to generalize these wave functions to allow nonuniform states, arising from interactions which may be random and/or frustrated. In the Szi basis, the amplitude is exp[1/2H̃({Szi})] where the pseudo-Hamiltonian is given by H̃=-∑i2iθiSz i -(1/2)!∑ijKijSz iSzj -(1/3!)∑ijkiL ijkSzi SzjS zk. Here the classical ground-state directions {θi} (=0 or π in the Néel state) are found by minimizing an effective classical energy F=∑ij[Aij cos(θi-θj) +Bij cos 2(θi-θj)], where (A ij,Jij) are functions of nearby Jij's. Next, Kij and Lijk are taken to be functions of the values {Jij} and the angles {θi-θj}. The functions for Aij, Bij, Kij, and L ijk depend parametrically on a small set of variational parameters. Thus the dimension of parameter space does not grow with system size. We estimate the parameter values analytically, using the spin-wave approximation in a uniformly twisted square-lattice antiferromagnet. Also, the general form of the three-spin coefficient Lijk is roughly a sum of contributions ∝Jij sin(θi-θj), and j and k are both neighbors of spin i.
引用
收藏
页码:5752 / 5754
页数:3
相关论文
共 17 条
[1]   MAGNETIC PHASE-DIAGRAM AND MAGNETIC PAIRING IN DOPED LA2CUO4 [J].
AHARONY, A ;
BIRGENEAU, RJ ;
CONIGLIO, A ;
KASTNER, MA ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1988, 60 (13) :1330-1333
[2]   A SCALING METHOD FOR LOW-TEMPERATURE BEHAVIOR OF RANDOM ANTI-FERROMAGNETIC SYSTEMS [J].
BHATT, RN ;
LEE, PA .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (03) :1703-1707
[3]   TWO-DIMENSIONAL QUANTUM HEISENBERG-ANTIFERROMAGNET AT LOW-TEMPERATURES [J].
CHAKRAVARTY, S ;
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW B, 1989, 39 (04) :2344-2371
[4]   ISING TRANSITION IN FRUSTRATED HEISENBERG MODELS [J].
CHANDRA, P ;
COLEMAN, P ;
LARKIN, AI .
PHYSICAL REVIEW LETTERS, 1990, 64 (01) :88-91
[5]   ORDERING DUE TO DISORDER IN A FRUSTRATED VECTOR ANTIFERROMAGNET [J].
HENLEY, CL .
PHYSICAL REVIEW LETTERS, 1989, 62 (17) :2056-2059
[6]   SIMPLE VARIATIONAL WAVE-FUNCTIONS FOR TWO-DIMENSIONAL HEISENBERG SPIN-1/2 ANTIFERROMAGNETS [J].
HUSE, DA ;
ELSER, V .
PHYSICAL REVIEW LETTERS, 1988, 60 (24) :2531-2534
[7]   ARE THERE QUANTUM EFFECTS IN SPIN-GLASSES [J].
KLEMM, RA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (18) :L735-L737
[8]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&
[9]   SOME NEW VARIATIONAL RESONATING-VALENCE-BOND-TYPE WAVE-FUNCTIONS FOR THE SPIN-1-2 ANTIFERROMAGNETIC HEISENBERG-MODEL ON A SQUARE LATTICE [J].
LIANG, S ;
DOUCOT, B ;
ANDERSON, PW .
PHYSICAL REVIEW LETTERS, 1988, 61 (03) :365-368
[10]   EFFECTS THAT CAN STABILIZE MULTIPLE SPIN-DENSITY WAVES [J].
LONG, MW .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (17) :2857-2874