NONLINEAR FREE-VIBRATION OF HEATED ORTHOTROPIC RECTANGULAR-PLATES

被引:38
作者
CHANG, WP
JEN, SC
机构
[1] Chung-Yuan Christian Univ, Chung-Li, Taiwan, Chung-Yuan Christian Univ, Chung-Li, Taiwan
关键词
MATHEMATICAL TECHNIQUES - Nonlinear Equations - THERMAL EFFECTS - Analysis - THERMOELASTICITY - Analysis;
D O I
10.1016/0020-7683(86)90091-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An analytical analysis of free vibrations of a heated orthotropic rectangular thin plate under various boundary conditions is presented. The nonlinear governing equations are derived from von Karman plate theory and Berger's analysis separately; from them the Duffing-type nonlinear ordinary equations are then obtained by employing Galerkin's method using one-term approximation. The methods of successive approximation and complete elliptic cosine are applied to solve the nonlinear equations. The influence of temperature changes and large amplitudes on the period of free vibrations are established; also the buckling temperature is obtained. The analytical solutions are compared with numerical results from Runge-Kutta method. Two different approaches to linearize thermoelastic plate equations are considered and compared.
引用
收藏
页码:267 / 281
页数:15
相关论文
共 16 条
[1]   VIBRATION OF THERMALLY STRESSED PLATES WITH VARIOUS BOUNDARY-CONDITIONS [J].
BAILEY, CD .
AIAA JOURNAL, 1973, 11 (01) :14-19
[2]  
BAILEY CD, 1973, NASA CR2147
[3]  
Berger H. M., 1955, J APPL MECH, V22, P465
[4]  
Boley B. A., 1960, THEORY THERMAL STRES
[5]  
Broutman L.J., 1980, ANAL PERFORMANCE FIB
[6]  
CARNAHAN B, 1977, APPLIED NUMERICAL ME
[7]  
CHANG WP, 1983, CHUNG YUAN J, V12, P50
[8]  
CHANG WP, 1983, NAT SCI COUNCIL MONT, V11, P802
[9]  
CUKIC R, 1973, ARCH MECH, V25, P513
[10]  
NOWACKI W, 1975, DYNAMIC PROBLEMS THE