WEYL-TITCHMARSH THEORY FOR STURM-LIOUVILLE OPERATORS WITH DISTRIBUTIONAL POTENTIALS

被引:80
作者
Eckhardt, Jonathan [1 ]
Gesztesy, Fritz [2 ]
Nichols, Roger [3 ]
Teschl, Gerald [1 ,4 ]
机构
[1] Univ Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Tennessee Chattanooga, Math Dept, Dept 6956, Chattanooga, TN 37403 USA
[4] Int Erwin Schrodinger, Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Sturm-Liouville operators; distributional coefficients; Weyl-Titchmarsh theory; Friedrichs and Krein extensions; positivity preserving and improving semigroups;
D O I
10.7494/OpMath.2013.33.3.467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We systematically develop Weyl-Titchmarsh theory for singular differential operators on arbitrary intervals (a; b) subset of R associated with rather general differential expressions of the type Tf = 1/r (-(p[f' + sf])' + sp [f ' + sf] + qf ), where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a; b), with p not equal 0, r > 0 a.e. on (a, b), and p(-1), q, r, s is an element of L-loc(1) ((a, b); d x), and f is supposed to satisfy f is an element of AC (loc) ((a, b)), p [f' + sf] is an element of AC (loc) ((a, b))
引用
收藏
页码:467 / 563
页数:97
相关论文
共 162 条
[1]   Modified Krein Formula and Analytic Perturbation Procedure for Scattering on Arbitrary Junction [J].
Adamyan, V. ;
Pavlov, B. ;
Yafyasov, A. .
MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 1: OPERATOR THEORY AND RELATED TOPICS, 2009, 190 :3-+
[2]  
Akhiezer N. I., 1981, THEORY LINEAR OPERAT, VII
[3]   On spectra of non-self-adjoint Sturm-Liouville operators [J].
Albeverio, S. ;
Hryniv, R. ;
Mykytyuk, Ya. .
SELECTA MATHEMATICA-NEW SERIES, 2008, 13 (04) :571-599
[4]  
Albeverio S., 2001, SINGULAR PARTURBATIO
[5]  
Albeverio S., 2005, SOLVABLE MODELS QUAN
[6]   Spectral theory of semibounded Sturm-Liouville operators with local interactions on a discrete set [J].
Albeverio, Sergio ;
Kostenko, Aleksey ;
Malamud, Mark .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[7]  
ALONZO A, 1981, J OPERAT THEOR, V6, P407
[8]  
Ando T., 1970, TOHOKU MATH J, V22, P65
[9]   The von Neumann problem for nonnegative symmetric operators [J].
Arlinskii, Y ;
Tsekanovskii, E .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (03) :319-356
[10]   On von Neumann's problem in extension theory of nonnegative operators [J].
Arlinskii, Y ;
Tsekanovskii, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) :3143-3154