A BORDERLINE RANDOM FOURIER-SERIES

被引:7
作者
TALAGRAND, M [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
UNIFORM CONVERGENCE; INTEGRABILITY CONDITION;
D O I
10.1214/aop/1176988289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a mean zero random variable X, and an independent sequence (X(n)) distributed like X. We show that the random Fourier series Sigma(n greater than or equal to 1) n(-1)X(n) exp(2i pi nt) converges uniformly almost surely if and only if E(\X\ log log(max(e(e), \X\))) < infinity.
引用
收藏
页码:776 / 785
页数:10
相关论文
共 6 条
[1]  
LACEY M, 1993, COMMUNICATION
[2]  
MARCUS M, 1987, MEM AM MATH SOC, V368
[3]  
MARCUS M, 1991, RANDOM FOURIER SERIE
[4]  
SJOLIN P, 1969, ARK MATH, V7, P514
[5]   CHARACTERIZATION OF ALMOST SURELY CONTINUOUS 1-STABLE RANDOM FOURIER-SERIES AND STRONGLY STATIONARY-PROCESSES [J].
TALAGRAND, M .
ANNALS OF PROBABILITY, 1990, 18 (01) :85-91
[6]  
TALAGRAND M, 1992, ANN PROBAB, V20, P2