UNBIASED RIDGE ESTIMATION WITH PRIOR INFORMATION AND RIDGE TRACE

被引:21
作者
CROUSE, RH
JIN, C
HANUMARA, RC
机构
[1] CENT CONNECTICUT STATE UNIV,DEPT MATH SCI,NEW BRITAIN,CT 06050
[2] UNIV RHODE ISL,DEPT COMP SCI & STAT,KINGSTON,RI 02881
关键词
MULTICOLLINEARITY; PRIOR INFORMATION; RIDGE TRACE; MEAN SQUARE ERROR; UNBIASED RIDGE ESTIMATION;
D O I
10.1080/03610929508831620
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A procedure is illustrated to incorporate prior information in the ridge regression model. Unbiased ridge estimators with prior information are defined and a robust estimate of the ridge parameter if is proposed.
引用
收藏
页码:2341 / 2354
页数:14
相关论文
共 12 条
[1]   AN INTRODUCTION TO EMPIRICAL BAYES DATA-ANALYSIS [J].
CASELLA, G .
AMERICAN STATISTICIAN, 1985, 39 (02) :83-87
[2]   SYMBOLIC MATRIX DERIVATIVES [J].
DWYER, PS ;
MACPHAIL, MS .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (04) :517-534
[3]   DATA-ANALYSIS USING STEINS ESTIMATOR AND ITS GENERALIZATIONS [J].
EFRON, B ;
MORRIS, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) :311-319
[4]  
Hoerl A.E., 1981, AM J MATH MANAGE SCI, V1, P5, DOI DOI 10.1080/01966324.1981.10737061
[5]   RIDGE REGRESSION - SOME SIMULATIONS [J].
HOERL, AE ;
KENNARD, RW ;
BALDWIN, KF .
COMMUNICATIONS IN STATISTICS, 1975, 4 (02) :105-123
[6]   RIDGE REGRESSION - APPLICATIONS TO NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :69-&
[7]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[8]   MULTICOLLINEARITY - BAYESIAN INTERPRETATION [J].
LEAMER, EE .
REVIEW OF ECONOMICS AND STATISTICS, 1973, 55 (03) :371-380
[9]  
Lindley D. V., 1962, J R STAT SOC B, V24, P285
[10]  
Pliskin L. J., 1987, COMMUN STAT, V16, P3427