USE OF THE DIRICHLET PROCESS FOR RELIABILITY-ANALYSIS

被引:0
|
作者
CHIEN, WTK
KUO, W
机构
关键词
DIRICHLET PROCESS; WEIBULL DISTRIBUTION; SIMULATION; VARIANCE REDUCTION; BURN-IN;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recently, many researchers apply the non-parametric Bayesian approach to predict the reliability of highly complex electronic systems. The Dirichlet process is the most common model for the non-parametric Bayesian analysis. The Kuo's simulation procedure [6] for Dirichlet process under a variance reduction techniques introduced in Chien and Kuo (1994) [2] is applied for a Weibull-distributed system. Optimal burn-in time is determined given the cost parameters. A model, the percentage of good items in a lot, is used to explain when the Dirichlet process is not a proper choice.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 50 条
  • [31] On simulations from the two-parameter Poisson-Dirichlet process and the normalized inverse-Gaussian process
    Labadi L.A.
    Zarepour M.
    Sankhya A, 2014, 76 (1): : 158 - 176
  • [32] On Simulations from the Two-Parameter Poisson-Dirichlet Process and the Normalized Inverse-Gaussian Process
    Al Labadi, Luai
    Zarepour, Mahmoud
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2014, 76 (01): : 158 - 176
  • [33] Variational learning of a Dirichlet process of generalized Dirichlet distributions for simultaneous clustering and feature selection
    Fan, Wentao
    Bouguila, Nizar
    PATTERN RECOGNITION, 2013, 46 (10) : 2754 - 2769
  • [34] Nonparametric Localized Feature Selection via a Dirichlet Process Mixture of Generalized Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 25 - 33
  • [35] Analysis of Measurement Accuracy and Reliability of Intelligent Instrumentation in Process Control
    Gao H.
    Zhang Z.
    Ma X.
    Liu C.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [36] Dirichlet Process Mixtures of Linear Mixed Regressions
    Kyung, Minjung
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (06) : 625 - 637
  • [37] Temporal summarization based on biterm dirichlet process
    Xi, Yao-Yi
    Li, Bi-Cheng
    Li, Tian-Cai
    Huang, Shan-Qi
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (08): : 1452 - 1460
  • [38] Multivariate Powered Dirichlet-Hawkes Process
    Poux-Medard, Gael
    Velcin, Julien
    Loudcher, Sabine
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT II, 2023, 13981 : 47 - 61
  • [39] Nonlinear Models Using Dirichlet Process Mixtures
    Shahbaba, Babak
    Neal, Radford
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 1829 - 1850
  • [40] Bayesian haplotype inference via the Dirichlet process
    Xing, Eric P.
    Jordan, Michael I.
    Sharan, Roded
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (03) : 267 - 284