DIGITAL SUM PROBLEMS AND SUBSTITUTIONS ON A FINITE ALPHABET

被引:15
作者
DUMONT, JM
THOMAS, A
机构
[1] FAC SCI LUMINY, DEPT MATH, CNRS, VRA 225, F-13288 MARSEILLE 9, FRANCE
[2] FAC SCI ST CHARLES, DEPT MATH, CNRS, URA 225, F-13331 MARSEILLE 03, FRANCE
关键词
D O I
10.1016/0022-314X(91)90054-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (ui)i ≥ 1 be a fixed point for a substitution σ on a finite alphabet A and for a ∈ A, f(a) a real number. We establish an asymptotic formula for S(N) = Σn < NΣi ≤ nf(ui) in the case where the second largest eigenvalue of the substitution matrix equals one and under some additional hypothesis. More precisely S(N) = αN logθ N + NF(N) + o(N), where the real number α depending on σ and f is explicitly determined and θ > 1 is the largest eigenvalue of the substitution matrix; F is a continuous, nowhere differentiable (if α∈0), real function such that F(θx) = F(x) for all x>0. Using the same method we prove a similar formula for Σn < N s(n), s(n) the sum of digits function with respect to the system of numeration associated with σ. These formulae generalize some recent work concerning digital sum problems. © 1991.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 20 条
  • [1] SCALING PROPERTIES OF A STRUCTURE INTERMEDIATE BETWEEN QUASIPERIODIC AND RANDOM
    AUBRY, S
    GODRECHE, C
    LUCK, JM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) : 1033 - 1075
  • [2] WHICH DISTRIBUTIONS OF MATTER DIFFRACT - AN INITIAL INVESTIGATION
    BOMBIERI, E
    TAYLOR, JE
    [J]. JOURNAL DE PHYSIQUE, 1986, 47 (C-3): : 19 - 28
  • [3] BOMBIERI E, 1986, J PHYS C SOLID STATE, V3, P28
  • [4] BOYD DW, 1989, DISS MATH, V283
  • [5] Brauer A., 1950, MATH NACHR, V4, P250
  • [6] ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS .2.
    BRILLHART, J
    ERDOS, P
    MORTON, P
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1983, 107 (01) : 39 - 69
  • [7] CHRISTOL G, 1980, B SOC MATH FR, V108, P401
  • [8] Cobham A., 1972, MATH SYSTEMS THEORY, V6, P164, DOI 10.1007/BF01706087
  • [9] A SUMMATION FORMULA INVOLVING FIBONACCI DIGITS
    COQUET, J
    VANDENBOSCH, P
    [J]. JOURNAL OF NUMBER THEORY, 1986, 22 (02) : 139 - 146
  • [10] A SUMMATION FORMULA RELATED TO THE BINARY DIGITS
    COQUET, J
    [J]. INVENTIONES MATHEMATICAE, 1983, 73 (01) : 107 - 115