DIGITAL SUM PROBLEMS AND SUBSTITUTIONS ON A FINITE ALPHABET

被引:15
作者
DUMONT, JM
THOMAS, A
机构
[1] FAC SCI LUMINY, DEPT MATH, CNRS, VRA 225, F-13288 MARSEILLE 9, FRANCE
[2] FAC SCI ST CHARLES, DEPT MATH, CNRS, URA 225, F-13331 MARSEILLE 03, FRANCE
关键词
D O I
10.1016/0022-314X(91)90054-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (ui)i ≥ 1 be a fixed point for a substitution σ on a finite alphabet A and for a ∈ A, f(a) a real number. We establish an asymptotic formula for S(N) = Σn < NΣi ≤ nf(ui) in the case where the second largest eigenvalue of the substitution matrix equals one and under some additional hypothesis. More precisely S(N) = αN logθ N + NF(N) + o(N), where the real number α depending on σ and f is explicitly determined and θ > 1 is the largest eigenvalue of the substitution matrix; F is a continuous, nowhere differentiable (if α∈0), real function such that F(θx) = F(x) for all x>0. Using the same method we prove a similar formula for Σn < N s(n), s(n) the sum of digits function with respect to the system of numeration associated with σ. These formulae generalize some recent work concerning digital sum problems. © 1991.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 20 条
[1]   SCALING PROPERTIES OF A STRUCTURE INTERMEDIATE BETWEEN QUASIPERIODIC AND RANDOM [J].
AUBRY, S ;
GODRECHE, C ;
LUCK, JM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) :1033-1075
[2]   WHICH DISTRIBUTIONS OF MATTER DIFFRACT - AN INITIAL INVESTIGATION [J].
BOMBIERI, E ;
TAYLOR, JE .
JOURNAL DE PHYSIQUE, 1986, 47 (C-3) :19-28
[3]  
BOMBIERI E, 1986, J PHYS C SOLID STATE, V3, P28
[4]  
BOYD DW, 1989, DISS MATH, V283
[5]  
Brauer A., 1950, MATH NACHR, V4, P250
[6]   ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS .2. [J].
BRILLHART, J ;
ERDOS, P ;
MORTON, P .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 107 (01) :39-69
[7]  
CHRISTOL G, 1980, B SOC MATH FR, V108, P401
[8]  
Cobham A., 1972, MATH SYSTEMS THEORY, V6, P164, DOI 10.1007/BF01706087
[9]   A SUMMATION FORMULA INVOLVING FIBONACCI DIGITS [J].
COQUET, J ;
VANDENBOSCH, P .
JOURNAL OF NUMBER THEORY, 1986, 22 (02) :139-146
[10]   A SUMMATION FORMULA RELATED TO THE BINARY DIGITS [J].
COQUET, J .
INVENTIONES MATHEMATICAE, 1983, 73 (01) :107-115