Uniformly Convex Metric Spaces

被引:17
作者
Kell, Martin [1 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
来源
ANALYSIS AND GEOMETRY IN METRIC SPACES | 2014年 / 2卷 / 01期
关键词
convex metric spaces; weak topologies; generalized barycenters; Banach-Saks property;
D O I
10.2478/agms-2014-0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit a generalized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simple proof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology, called co-convex topology, agrees with the usually weak topology in Banach spaces. An example of a CAT(0)-space with weak topology which is not Hausdorff is given. In the end existence and uniqueness of generalized barycenters is shown, an application to isometric group actions is given and a Banach-Saks property is proved.
引用
收藏
页码:359 / 380
页数:22
相关论文
共 18 条
  • [1] Bacak M, 2014, CONVEX ANAL OPTIMIZA
  • [2] A notion of nonpositive curvature for general metric spaces
    Bacak, Miroslav
    Hua, Bobo
    Jost, Juergen
    Kell, Martin
    Schikorra, Armin
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 38 : 22 - 32
  • [3] Baillon J. B., 1988, NONEXPANSIVE MAPPING
  • [4] Bridson M.R., 1999, METRIC SPACES NONPOS, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
  • [5] Busemann H., 1979, J GEOMETRY, V12, P17
  • [6] Clarkson JA, 1936, T AM MATH SOC, V40, P396
  • [7] CAT(k)-spaces, weak convergence and fixed points
    Espinola, Rafa
    Fernandez-Leon, Aurora
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) : 410 - 427
  • [8] Foertsch T., 2004, BALL VERSUS DISTANCE
  • [9] Huff R., 1980, ROCKY MOUNTAIN J MAT
  • [10] Kell M., 2013, ARXIV13115407