ON THE NON-NEWTONIAN INCOMPRESSIBLE FLUIDS

被引:96
作者
MALEK, J
NECAS, J
RUZICKA, M
机构
[1] CHARLES UNIV, INST MATH, CS-18600 PRAGUE 8, CZECHOSLOVAKIA
[2] INST APPL MATH, W-5300 BONN 1, GERMANY
关键词
D O I
10.1142/S0218202593000047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Navier-Stokes equations can be included as a special case into the class of non-Newtonian incompressible fluids with the nonlinear stress tensor tau = tau(e), the components of which satisfy the p-growth condition. Measure-valued solutions already exist for p > 2n/(n + 2). For the space periodic problem, the existence of the weak solution is then obtained for p > 3n/(n + 2). These solutions are regular and unique for p greater-than-or-equal-to 1 + 2n/(n + 2).
引用
收藏
页码:35 / 63
页数:29
相关论文
共 21 条
[1]  
Adams R.A., 1975, SOBOLEV SPACES
[2]  
BALL JM, 1989, LECT NOTE PHYS, V344, P241
[3]  
BELLOUT H, 1991, YOUNG MEASURE VALUED
[4]  
BELLOUT H, IN PRESS Q APPL MATH
[5]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[6]  
Constantin P., 1988, NAVIER STOKES EQUATI
[7]   ANALYSIS OF A LADYZHENSKAYA MODEL FOR INCOMPRESSIBLE VISCOUS-FLOW [J].
DU, Q ;
GUNZBURGER, MD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 155 (01) :21-45
[8]   DERIVATIVE ESTIMATES FOR THE NAVIER-STOKES EQUATIONS IN A 3-DIMENSIONAL REGION [J].
DUFF, GFD .
ACTA MATHEMATICA, 1990, 164 (3-4) :145-210
[9]  
DUFF GFD, 1990, CR MATH REP ACAD SCI, V7
[10]  
EDWARDS RE, 1965, FUNCTIONAL ANAL