Multiphase Rayleigh-Benard convection

被引:4
|
作者
Oresta, Paolo [1 ,2 ,3 ]
Fornarelli, Francesco [2 ,3 ]
Prosperetti, Andrea [4 ,5 ]
机构
[1] Polytech Bari, Dept Math Mech & Management, I-70126 Bari, Italy
[2] Univ Salento, Dept Engn Innovat, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
[4] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[5] Univ Twente, JM Burgers Ctr Fluid Dynam, Dept Sci & Technol, Phys Fluids Grp, NL-7500 AE Enschede, Netherlands
来源
MECHANICAL ENGINEERING REVIEWS | 2014年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
Two-phase Rayleigh-Benard convection; Point particles; Point bubbles; Natural convection; Heat transfer;
D O I
10.1299/mer.2014fe0003
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Numerical simulations of two-phase Rayleigh-Benard convection in a cylindrical cell with particles or vapor bubbles suspended in the fluid are described. The particles or bubbles are modeled as points, the Rayleigh number is 2 x 10(6) and the fluids considered are air, for the particle case, and saturated water for bubbles. It is shown that the presence of a second phase has a profound effect on the flow and heat transfer in the cell. The heat capacity of the particles and the latent heat of the liquid are used, in dimensionless form, as control parameters to modulate these effects. It is shown that, as these parameters are varied, the nature of the flow in the cell changes substantially, in some cases with adverse and in others beneficial effects on the Nusselt number. By the analysis of several aspects of the numerical results, a physical discussion of several mechanisms is provided.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582
  • [2] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [3] DYNAMICS OF THE RAYLEIGH-BENARD CONVECTION
    PLATTEN, JK
    LEGROS, JC
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1980, 5 (04) : 243 - 254
  • [4] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +
  • [5] INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    MANNEVILLE, P
    POMEAU, Y
    JOURNAL DE PHYSIQUE LETTRES, 1980, 41 (15): : L341 - L345
  • [6] CRITICAL RAYLEIGH NUMBER IN RAYLEIGH-BENARD CONVECTION
    Guo, Yan
    Han, Yongqian
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 149 - 160
  • [7] Rayleigh-Benard convection in rotating fluids
    Tagare, S. G.
    Babu, A. Benerji
    Rameshwar, Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) : 1168 - 1178
  • [8] Vapor condensation in Rayleigh-Benard convection
    Li, Min
    Zhang, Yang
    Liu, Haihu
    Wang, Yuan
    Yang, Bin
    PHYSICS OF FLUIDS, 2021, 33 (01)
  • [9] Rayleigh-Benard convection in a vertical cylinder
    Leong, SS
    CHT'01: ADVANCES IN COMPUTATIONAL HEAT TRANSFER II, VOLS 1 AND 2, PROCEEDINGS, 2001, : 883 - 890
  • [10] Identification of the wind in Rayleigh-Benard convection
    van Reeuwijk, M
    Jonker, HJJ
    Hanjalic, K
    PHYSICS OF FLUIDS, 2005, 17 (05) : 1 - 4