THE FINITE-DIFFERENCE METHOD FOR FIRST-ORDER IMPULSIVE PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS

被引:3
作者
BAINOV, D [1 ]
MINCHEV, E [1 ]
KAMONT, Z [1 ]
机构
[1] UNIV GDANSK, GDANSK, POLAND
关键词
FINITE DIFFERENCE METHOD; IMPULSIVE PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS;
D O I
10.1007/BF02238434
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider initial boundary value problems for first order impulsive partial differential-functional equations. We give sufficient conditions for the convergence of a general class of one step difference methods. We assume that given functions satisfy the non-linear estimates of the Perron type with respect to the functional argument. The proof of stability is based on a theorem on difference functional inequalities generated by an impulsive differential-functional problem. It is an essential assumption in our consideration that given functions satisfy the Volterra condition. We give a numerical example.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 22 条
[1]  
BAINOV D, IN PRESS UTILITAS MA
[2]  
Bainov D. D., 1989, SYSTEMS IMPULSE EFFE
[3]  
BAINOV DD, 1989, THEORY IMPULSIVE DIF
[4]  
BASSAININI P, 1982, ATTI SEMIN MAT FIS, V31, P1
[5]  
BRANDI P, 1991, ATTI SEMIN MAT FIS, V39, P277
[6]  
Byszewski L., 1992, Journal of Mathematical and Physical Sciences, V26, P513
[7]   A MATHEMATICAL-MODEL OF IRON-METABOLISM [J].
COLLI-FRANZONE, P ;
PAGANUZZI, A ;
STEFANELLI, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 15 (02) :173-201
[8]  
CZYZEWSKAWAZEWS.M, 1981, J MATH BIOL, V13, P149
[9]   ON THE STABILITY OF THE CELL-SIZE DISTRIBUTION [J].
DIEKMANN, O ;
HEIJMANS, HJAM ;
THIEME, HR .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (02) :227-248
[10]  
Eichhom W., 1985, AEQUATIONES MATH, V28, P190