TO WHAT CLASS OF FRACTALS DOES THE ALEXANDER-ORBACH CONJECTURE APPLY

被引:62
作者
LEYVRAZ, F [1 ]
STANLEY, HE [1 ]
机构
[1] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
关键词
D O I
10.1103/PhysRevLett.51.2048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2048 / 2051
页数:4
相关论文
共 12 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]   EXACT FRACTALS WITH ADJUSTABLE FRACTAL AND FRACTION DIMENSIONALITIES [J].
BENAVRAHAM, D ;
HAVLIN, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :L559-L563
[3]  
de Gennes P. G., 1976, RECHERCHE, V7, P919
[4]   ANOMALOUS DIFFUSION ON PERCOLATING CLUSTERS [J].
GEFEN, Y ;
AHARONY, A ;
ALEXANDER, S .
PHYSICAL REVIEW LETTERS, 1983, 50 (01) :77-80
[5]   DIFFUSION AND FRACTION DIMENSIONALITY ON FRACTALS AND ON PERCOLATION CLUSTERS [J].
HAVLIN, S ;
BENAVRAHAM, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :L483-L487
[6]   SPECTRAL DIMENSION FOR THE DIFFUSION-LIMITED AGGREGATION MODEL OF COLLOID GROWTH [J].
MEAKIN, P ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1983, 51 (16) :1457-1460
[7]  
Mitescu C. D., 1983, Annals of the Israel Physical Society, V5, P81
[8]   CONFIRMATION OF DYNAMICAL SCALING AT THE PERCOLATION-THRESHOLD [J].
PANDEY, RB ;
STAUFFER, D .
PHYSICAL REVIEW LETTERS, 1983, 51 (07) :527-529
[9]  
RAMMAL R, 1983, J PHYS LETT-PARIS, V44, pL13, DOI 10.1051/jphyslet:0198300440101300
[10]  
STANLEY HE, UNPUB PHYS REV B