A NOTE ON 3-COLORABLE PLANE GRAPHS WITHOUT 5- AND 7-CYCLES

被引:6
作者
Xu, Baogang [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, 122 Ninghai Rd, Nanjing 210097, Peoples R China
关键词
Plane graph; cycle; coloring;
D O I
10.1142/S1793830909000270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [1], Borodin et al. figured out a gap of [5], and gave a new proof with the similar technique. The purpose of this note is to fix the gap of [5] by slightly revising the definition of special faces, and adding a few lines of explanation in the original proofs of [5] (new added text are all in italic type).
引用
收藏
页码:347 / 353
页数:7
相关论文
共 6 条
[1]   Planar graphs without 5-and 7-cycles and without adjacent triangles are 3-colorable [J].
Borodin, O. V. ;
Glebov, A. N. ;
Montassier, M. ;
Raspaud, A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) :668-673
[2]   Planar graphs without cycles of length from 4 to 7 are 3-colorable [J].
Borodin, OV ;
Glebov, AN ;
Raspaud, A ;
Salavatipour, MR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) :303-311
[3]   A sufficient condition for planar graphs to be 3-colorable [J].
Borodin, OV ;
Raspaud, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) :17-27
[4]  
Steinberg R., 1993, GRAPH THEORY, V55, P211, DOI DOI 10.1016/S0167-5060(08)70391-1
[5]   A 3-color theorem on plane graphs without 5-circuits [J].
Xu, Bao Gang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (06) :1059-1062
[6]   On 3-colorable plane graphs without 5-and 7-cycles [J].
Xu, Baogang .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) :958-963