CONVOLUTION THEOREMS FOR WAVELET TRANSFORM ON TEMPERED DISTRIBUTIONS AND THEIR EXTENSION TO TEMPERED BOEHMIANS

被引:9
|
作者
Roopkumar, R. [1 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630003, Tamil Nadu, India
关键词
Convolution; tempered distributions; tempered Boehmians; wavelet transform;
D O I
10.1142/S1793557109000108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new convolution circle times : S'(R x R+) x D(R) -> S'(R x R+) and derive the convolution theorems for wavelet transform and dual wavelet transform in the context of tempered distributions. By using the new convolution, we construct a Boehmian space containing the tempered distributions on R x R+. Applying the convolution theorems in the context of tempered distributions, we also extend the wavelet transform and dual wavelet transform between the tempered Boehmian space and the new Boehmian space as linear continuous maps with respect to delta-convergence and Delta- convergence, satisfying the convolution theorems.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 50 条
  • [1] The Hankel transform of tempered Boehmians via the exchange property
    Arteaga, Cristian
    Marrero, Isabel
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 810 - 818
  • [2] Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ (Rn)
    Pandey, Jagdish Narayan
    Maurya, Jay Singh
    Upadhyay, Santosh Kumar
    Srivastava, Hari Mohan
    SYMMETRY-BASEL, 2019, 11 (02):
  • [3] Ridgelet transform on tempered distributions
    Roopkumar, R.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (03): : 431 - 439
  • [4] Curvelet transform on tempered distributions
    Moorthy, R. Subash
    Roopkumar, R.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (02)
  • [5] The Cauchy Representation of Integrable and Tempered Boehmians
    Loonker, Deshna
    Banerji, Pradeep Kumar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2007, 47 (04): : 481 - 493
  • [6] Hankel transformation and Hankel convolution of tempered Beurling distributions
    Belhadj, M
    Betancor, JJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (04) : 1171 - 1203
  • [7] ON EXTENSION OF GABOR TRANSFORM TO BOEHMIANS
    Roopkumar, R.
    MATEMATICKI VESNIK, 2013, 65 (04): : 431 - 444
  • [8] On the Wavelet Transform for Boehmians
    Abhishek Singh
    Aparna Rawat
    Shubha Singh
    P. K. Banerji
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 331 - 336
  • [9] On the Wavelet Transform for Boehmians
    Singh, Abhishek
    Rawat, Aparna
    Singh, Shubha
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (03) : 331 - 336
  • [10] Euler scheme and tempered distributions
    Guyon, Julien
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (06) : 877 - 904