Second Order Parallel Tensor in Trans-Sasakian Manifolds and Connection with Ricci Soliton

被引:3
作者
Debnath, Srabani [1 ]
Bhattacharyya, Arindam [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
关键词
Trans-sasakianmanifolds; parallel second order covariant tensor field; irreducible metric; Einstein space; Ricci soliton;
D O I
10.1134/S1995080212040075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we have solved the Eisenhart problem for the symmetric case in the trans-Sasakian manifold of type (alpha, beta) with non-vanishing xi-sectional curvature and studied some of its consequences. Then we apply our result to obtain a Ricci soliton and studied its behavior for a particular case. Finally we studied the possible consequence for an affine Killing vector field.
引用
收藏
页码:312 / 316
页数:5
相关论文
共 18 条
[1]  
Blair D.E., 1990, PUBLICACIONS MAT, V34, P199, DOI [10.5565/PUBLMAT_34190_15, DOI 10.5565/PUBLMAT_34190_15]
[2]  
Calin C, 2010, B MALAYS MATH SCI SO, V33, P361
[3]  
Das L. S., 2007, ACTA MATH ACAD PAEDA, V2007, P65
[4]  
De U. C., 2003, Kyungpook Mathematical Journal, V43, P247
[5]  
De UC, 1996, PUBL MATH-DEBRECEN, V49, P33
[6]   Symmetric tensors of the second order whose first covariant derivatives are zero [J].
Eisenhart, Luther Pfahler .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1923, 25 (1-4) :297-306
[7]  
Gray A., 1980, ANN MAT PUR APPL, V4, P35, DOI DOI 10.1007/BF01796539
[8]  
Hamilton RS, 1988, CONT MATH, P237, DOI DOI 10.1090/CONM/071/954419
[9]  
Kenmotsu K., 1972, TOHOKU MATH J, V24, P93, DOI 10.2748/tmj/1178241594
[10]  
Levy H, 1926, ANN MATH, V27, P91