JACKKNIFE ESTIMATORS OF VARIANCE FOR PARAMETER ESTIMATES FROM ESTIMATING EQUATIONS WITH APPLICATIONS TO CLUSTERED SURVIVAL-DATA

被引:57
作者
LIPSITZ, SR
DEAR, KBG
ZHAO, LP
机构
[1] DANA FARBER CANC INST,BOSTON,MA 02115
[2] UNIV NEWCASTLE,DEPT STAT,NEWCASTLE,NSW 2308,AUSTRALIA
[3] FRED HUTCHINSON CANC RES CTR,PROGRAM EPIDEMIOL,SEATTLE,WA 98104
[4] LIMBURGS UNIV CTR,DIEPENBEEK,BELGIUM
关键词
CLUSTERED SURVIVAL DATA; QUASI-LIKELIHOOD; SCORE VECTOR;
D O I
10.2307/2532797
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An estimate of a parameter vector beta is often obtained by setting a ''score'' vector equal to zero and solving for ($) over cap beta. Estimating equations of this type include maximum likelihood, quasi-likelihood (McCullagh, 1983, Annals of Statistics 11, 59-67), and generalized estimating equations (Liang and Zeger, 1986, Biometrika 73, 13-22). White (1982, Econometrica 50, 1-26) proposed a variance estimator for ($) over cap beta that is robust to model misspecification. We show that a ''one-step'' jackknife estimator of variance is asymptotically equivalent to the variance estimator proposed by White. The one-step variance estimator may be preferred when the appropriate computer packages are not available to compute White's estimator directly. This jackknife estimator is very useful in our example with clustered survival data.
引用
收藏
页码:842 / 846
页数:5
相关论文
共 6 条