GAUSSIAN-PROCESSES AND ALMOST SPHERICAL-SECTIONS OF CONVEX-BODIES

被引:13
作者
GORDON, Y
机构
关键词
D O I
10.1214/aop/1176991893
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:180 / 188
页数:9
相关论文
共 10 条
[1]   ABSOLUTE AND UNCONDITIONAL CONVERGENCE IN NORMED LINEAR SPACES [J].
DVORETZKY, A ;
ROGERS, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1950, 36 (03) :192-197
[2]  
Dvoretzky A., 1961, P INT S LIN SPAC JER, P123
[3]   DIMENSION OF ALMOST SPHERICAL SECTIONS OF CONVEX BODIES [J].
FIGIEL, T ;
LINDENSTRAUSS, J ;
MILMAN, VD .
ACTA MATHEMATICA, 1977, 139 (1-2) :53-94
[4]   SOME INEQUALITIES FOR GAUSSIAN-PROCESSES AND APPLICATIONS [J].
GORDON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (04) :265-289
[5]  
GORDON Y, 1987, IN PRESS PROBAB THEO
[6]   A SLEPIAN-GORDON INEQUALITY ON GAUSSIAN-PROCESSES [J].
KAHANE, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (01) :109-110
[7]  
Milman V. D., 1971, FUNCT ANAL APPL, V5, P28
[8]  
PISIER G, 1986, LECT NOTES MATH, V1206, P1
[9]   1-SIDED BARRIER PROBLEM FOR GAUSSIAN NOISE [J].
SLEPIAN, D .
BELL SYSTEM TECHNICAL JOURNAL, 1962, 41 (02) :463-+
[10]  
[No title captured]