IMMUNOLOGICAL EVIDENCE FOR THE PRESENCE OF ADVANCED GLYCOSYLATION END-PRODUCTS IN ATHEROSCLEROTIC LESIONS OF EUGLYCEMIC RABBITS

被引:132
作者
PALINSKI, W
KOSCHINSKY, T
BUTLER, SW
MILLER, E
VLASSARA, H
CERAMI, A
WITZTUM, JL
机构
[1] UNIV DUSSELDORF, DIABET RES INST, W-4000 DUSSELDORF, GERMANY
[2] PICOWER INST MED RES, MANHASSET, NY USA
关键词
ADVANCED GLYCOSYLATION END PRODUCTS; ARTERIOSCLEROSIS; IMMUNOCYTOCHEMISTRY; OXIDATION; AUTOANTIBODIES;
D O I
10.1161/01.ATV.15.5.571
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atherosclerosis is known to be accelerated in diabetic patients, but the mechanisms of this acceleration are poorly understood. Nonenzymatic glycosylation of long-lived proteins results in the formation of advanced glycosylation end products (AGEs), which are extensively cross-linked and could contribute to atherogenesis. Oxidative modification of LDL is also an important process in atherogenesis. In vitro evidence suggests that hyperglycemia may enhance lipid peroxidation, and conversely, that increased lipid peroxidation may enhance AGE formation. If such interactions occur in vivo, we hypothesized that AGE should be found in atherosclerotic lesions of euglycemic LDL receptor-deficient rabbits in areas rich in lipids and oxidized lipoproteins. To demonstrate the presence of AGEs, we developed antisera against a specific ''model'' compound of AGE, 2-furoyl-4(5)-(2-furanyl)-1H-imidazole (FFI) by using FFI-hexanoic acid (FFI-HA)-protein adducts as the antigen and against AGEs in general by using AGE-albumin as the antigen. Antisera generated with FFI-HA-protein adducts recognized FFI-HA alone as well as FFI-protein adducts. Native proteins or proteins conjugated with aldehydes formed during lipid peroxidation in vitro were not recognized by these antisera. Immunocytochemistry with both FFI-specific and AGE-specific antisera revealed the presence of these epitopes in atherosclerotic lesions of euglycemic LDL receptor-deficient rabbits but not in normal aortic tissues. AGE epitopes within atherosclerotic lesions were predominantly found in similar locations as epitopes generated during modification of the lipoproteins by oxidation, consistent with the hypothesized interactions between oxidation and glycosylation. Indirect evidence in support of the in vivo presence of FFI-like structures was also obtained by the observation that both diabetic and euglycemic human subjects contained autoantibodies that recognize FFI-protein adducts. Taken together, these data provide immunological evidence for the in vivo presence of FFI-like structures and other AGE-protein adducts in atherosclerotic lesions, even in euglycemic conditions.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 72 条
[1]  
Baynes J W, 1989, Prog Clin Biol Res, V304, P43
[2]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[3]  
BOYD HC, 1989, AM J PATHOL, V135, P815
[4]   COVALENT ATTACHMENT OF SOLUBLE-PROTEINS BY NONENZYMATICALLY GLYCOSYLATED COLLAGEN - ROLE IN THE INSITU FORMATION OF IMMUNE-COMPLEXES [J].
BROWNLEE, M ;
PONGOR, S ;
CERAMI, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1983, 158 (05) :1739-1744
[5]   NONENZYMATIC GLYCOSYLATION PRODUCTS ON COLLAGEN COVALENTLY TRAP LOW-DENSITY LIPOPROTEIN [J].
BROWNLEE, M ;
VLASSARA, H ;
CERAMI, A .
DIABETES, 1985, 34 (09) :938-941
[6]   LILLY LECTURE 1993 - GLYCATION AND DIABETIC COMPLICATIONS [J].
BROWNLEE, M .
DIABETES, 1994, 43 (06) :836-841
[7]   LIPID ADVANCED GLYCOSYLATION - PATHWAY FOR LIPID OXIDATION IN-VIVO [J].
BUCALA, R ;
MAKITA, Z ;
KOSCHINSKY, T ;
CERAMI, A ;
VLASSARA, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (14) :6434-6438
[8]   MODIFICATION OF LOW-DENSITY-LIPOPROTEIN BY ADVANCED GLYCATION END-PRODUCTS CONTRIBUTES TO THE DYSLIPIDEMIA OF DIABETES AND RENAL-INSUFFICIENCY [J].
BUCALA, R ;
MAKITA, Z ;
VEGA, G ;
GRUNDY, S ;
KOSCHINSKY, T ;
CERAMI, A ;
VLASSARA, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (20) :9441-9445
[9]   ADVANCED GLYCOSYLATION PRODUCTS QUENCH NITRIC-OXIDE AND MEDIATE DEFECTIVE ENDOTHELIUM-DEPENDENT VASODILATATION IN EXPERIMENTAL DIABETES [J].
BUCALA, R ;
TRACEY, KJ ;
CERAMI, A .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 87 (02) :432-438
[10]  
CERAMI A, 1988, DIABETES CARE, V11, P73