INTEGRAL MAXIMUM PRINCIPLE AND ITS APPLICATIONS

被引:31
作者
GRIGORYAN, A
机构
[1] Department of Mathematics, Bielefeld University Postfach, 100131 33501, Bielefeld
关键词
D O I
10.1017/S0308210500028511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The integral maximum principle for the heat equation on a Riemannian manifold is improved and applied to obtain estimates of double integrals of the heat kernel.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 9 条
[1]  
Aronson D.G., 1968, ANN SCUOLA NORM-SCI, V3, P607
[2]  
ARONSON DG, 1971, ANN SCUOLA NORM SUP, V25, P221
[3]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[4]   ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD [J].
CHENG, SY ;
LI, P ;
YAU, ST .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (05) :1021-1063
[5]   HEAT KERNEL BOUNDS, CONSERVATION OF PROBABILITY AND THE FELLER PROPERTY [J].
DAVIES, EB .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :99-119
[6]   FUNDAMENTAL SOLUTION OF THE HEAT-EQUATION ON AN ARBITRARY RIEMANNIAN MANIFOLD [J].
GRIGORYAN, AA .
MATHEMATICAL NOTES, 1987, 41 (5-6) :386-389
[7]  
LYONS T, 1990, U JOENSUU PUBLICATIO, V26
[8]   2-SIDED ESTIMATES OF FUNDAMENTAL-SOLUTIONS OF 2ND-ORDER PARABOLIC EQUATIONS, AND SOME APPLICATIONS [J].
PORPER, FO ;
EIDELMAN, SD .
RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (03) :119-178
[9]  
TAKEDA M, 1989, OSAKA J MATH, V26, P605