The Proper Elements and Simple Invariant Subspaces

被引:0
作者
Djordjevic, Slavisa V. [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Facultad Ciencias Fis Matemat, Apdo Postal 1152, Puebla, Mexico
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2012年 / 3卷 / 01期
关键词
Eigenvalues; Eigenvectors; Invariant subspaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper element of X is a triple (lambda, L, A) composed by an eigenvalue lambda, an invariant subspace of an operator A in B(X) generated by one eigenvector of lambda and the operator A. For (lambda(0), L-0, A(0)) is an element of Eig(X), where L-0 = L({x(0)}), the operator Ao induces an operator Ao from the quotient X/Lo into itself, i.e. (A(0)) over cap (x + L-0) = A(0)(x)+L-0. In paper we show that lambda(0) is a simple pole of Ao if and only if lambda(0) is not an element of sigma<((A(0)))over cap>. Follow this concept we can define simple invariant subspaces of linear operator T like invariant subspace E such that sigma(T-E) boolean AND sigma<((T-E))over cap> = phi, where T-E : E -> E is the restriction of T on E, (T-E) over cap is the operator (T-E) over cap (pi(y)) = pi(T(T(y)) on the quotient space X/E and pi is the natural homoeomorphism between X and X/E. Also, we give some properties of stability of simple invariant subspaces.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 8 条
[1]  
Ahues M., 2001, SPECTRAL COMPUTATION
[2]  
Aiena P., 2004, FREDHOLM LOCAL SPECT
[3]  
Barnes BA, 2007, ACTA SCI MATH, V73, P237
[4]  
Chaperon M., 2008, HONNEUR J M AROCA AS, V57, P123
[5]  
DJORDJEVIC S. V., 2009, FUNCT ANAL APPROX CO, V1, P19
[6]  
Hong-Ke Du, 1994, AM MATH SOC, V121, P761
[7]  
Kato T., 1995, PERTURBATION THEORY, pxxii+619
[8]  
NEWBURGH JD, 1951, DUKE MATH J, V18, P165, DOI 10.1215/S0012-7094-51-01813-3